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1 Introduction

This manual aims at providing an up-to-date description of the Kappa language and accompanying
software tools. It is a work in progress. We welcome feedback, but keep in mind that a manual is not a
modeling tutorial.

1.1 Background

Kappa is a rule-based modeling language. More specifically, it is a graph-rewrite language supported by
software for representing, reasoning about, and simulating systems of interacting structured entities
(graphs). The insistence on a grammatical structure distinguishes rule-based models from generic
agent-based models'. Kappa follows the same idea underlying the symbolic representation of organic
molecules as graphs and the specification of their transformations as graph-rewrite directives, Figure 1. In
chemistry, the concept of a rule emphasizes the distinction between the transformation of a structure
fragment and the reaction instance that results when that fragment is transformed within the context of
specific entities that contain it. In this sense, a rule represents the mechanism of an interaction. That is
precisely the intended meaning of a rule in Kappa.
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Figure 1: Graph rewriting in chemistry and Kappa. In chemistry, atoms have specific valences through
which they bind other atoms. In Kappa, proteins (here blue nodes with a type identified by a name) have
sites (here small nodes attached to the blue nodes and identified by names) through which they bind other
proteins. In addition to their binding state, sites can hold internal state (here color marks) typically denoting
post-translational modifications. A rule specifies the transformation of a graphical fragment. In Kappa as in
chemistry, when the fragment on the left hand side of a rule can be matched to a target graph, the matched
part is rewritten in place giving rise to a reaction.

Kappa originated with in mind applications to systems of protein-protein interaction where “structured
entities” are complexes of non-covalently bound proteins as they arise in signaling and assembly processes.
In Kappa, individual proteins appear as agents with a minimal abstract structure given by an interface of
sites that hold state required for interaction, such as binding and post-translational modification. This said,
Kappa is perhaps best thought of as a versatile framework for thinking about the statistical dynamics
induced by the mass-action of interacting heterogeneous agents, regardless of how one chooses to interpret
them.

Because rules avoid the need to pre-specify all possible molecular species, they enable reasoning about the

I The term “agent-based” is often used informally to refer to a modeling style in which discrete units of interaction (the agents)
are defined ad hoc, without a systematic internal structure. In such a setting, the complex of a kinase and a substrate might be
considered an agent. In Kappa, in contrast, an agent is an atomic entity and a complex of agents explicitly reveals—by virtue of a
graphical representation—its composition and connectivity in terms of atoms.



behavior of systems that are marked by combinatorially explosive complexity. Rule-based models can be
concise, transparent, and readily extensible, making them candidates for supporting model-based reasoning
in bioinformatics.

1.2 Support

The Kappa portal, http://kappalanguage.org, is the easiest way to access the latest software (and
previous versions). The ecology of Kappa tools consists of several software agents that communicate
through an ad hoc JSON-based protocol and expose high-level functionalities through an HTTP REST
service. A Python client (API) enables scripting to tailor work flows and is available as the kappy package
in pip.

Modeling in a rule-based language is much like writing large and complex programs, which is greatly
facilitated by an integrated development environment. An evolving browser-based User Interface (UI) is
aimed at integrating various Kappa web services. The Ul is accessible online and also available as a
self-contained downloadable application referred to as the Kappapp.

Figure 2: Elements of the Kappa UI. Left: Main window with editor and contact graph. Center: XY plots
of observables. Right: Patchwork (treemap) rendering of the system contents at a particular time point.

At one glance:
* Items of general interest and downloads can be found at http://kappalanguage.org
* Bug reports should be posted to https://github.com/Kappa-Dev/KaSim/issues

* The Kappa-user mailing list at http://groups.google.com/group/kappa-users is a quick way
for asking questions, finding answers, or sharing frustration.

* If you wish to contribute to the Kappa project, please contact Pierre Boutillier.

1.3 Hello ABC

To get a quick intuition about what a Kappa model looks like, consider the following simple system, which
is also pre-loaded and ready to run in the online version of the UI.

In this toy model, agents of type A can doubly phosphorylate agents of type C. However, unphosphorylated
C can bind A only in a complex with B. Once phosphorylated, C can bind an individual A, which then
phosphorylates C on a second site. The verbal statement of such a model is highly underspecified. To make
precise what we mean, we pin down its mechanisms in terms of clear rules.

1 // Signatures

2

3 %agent: A(x,c) // Declaration of agent A
4 %agent: B(x) // Declaration of agent B
5

%agent: C(xl{u p},x2{u p}) // Declaration of agent C


http://kappalanguage.org
http://kappalanguage.org
https://github.com/Kappa-Dev/KaSim/issues
http://groups.google.com/group/kappa-users
mailto:pierre.boutillier@laposte.net
https://tools.kappalanguage.org/try/?model=https://raw.githubusercontent.com/Kappa-Dev/KaSim/master/models/abc-pert.ka

// Variables

O 0w J o

%var: ’'on_rate’ 1.0E-4 // per molecule per second
10 %var: ’‘off rate’ 0.1 // per second
11 %var: 'mod_rate’ 1 // per second
12
13 // Rules
14

15 // A and B bind and dissociate:

16 ‘rule 1’ A(x[.]), B(x[.]) <—>

17 A(x[1]), B(x[1l]) @ "on_rate’, 'off rate’
18

19 // AB binds unphosphorylated C:

20 ‘rule 2’ A(x[_],cl[.1), C(x1{uil.]) —>

21 A(x[_],cl[2]), C(x1{u}[2]) @ "on_rate’

22

23 // site x1 is modified:

24 ‘'rule 3’ C(x1{u}[11), A(cIl1l]) ->

25 C(x1l{p}[.1), A(cIl[.]) @ 'mod_rate’

26

27 // A conditionally binds C:

28 ‘rule 4’ A(x[.],cl[.]), C(x1l{p}[.],x2{ull.1) —>

29 A(x[.],cl1]), C(x1l{p}[.],x2{u}[l]) @ 'on_rate’
30

31 // site x2 1s modified:

32 ’'rule 5 A(x[.],cl1]), C(x1{p}[.],x2{u}[1]) —>

33 A(x[.]1,c[.]), C(x1{p}[.]1.,x2{p}[.]) @ '"mod _rate’
34

35 // Observables

36

37 %obs: 'AB’ |A(x[x.B]) |

38 %obs: ‘Cuu’ |C(x1l{u},x2{u}) |
39 %obs: ‘Cpu’ |C(x1{p},x2{u})|
40 %obs: 'Cpp’ |C(x1{p},x2{p}) |
41

42 // Initial condition

43

44 %init: 1000 A(), B()
45 %init: 10000 C(x1{u},x2{u})

A file with these sections is also referred to as a “Kappa file”. The signatures section (lines 3—5) declares
for each agent a set of sites (its interface) and the possible values each site can take. For example, line 5
informs us that agents of type C have two sites x1 and x2 whose internal state may have the label u (for
unphosphorylated, say) or p (for phosphorylated). In the rules section, the rule labeled ’rule 2’ starts on
line 20 and asserts that if an agent of type A is bound (to someone not further specified—that’s the
underscore) at its site x and if it is free (unbound) at its site ¢, then it can bind an agent of type C provided
C’s site x1 is free and unphosphorylated. In this rule, the state of agent C at its site x2 is not mentioned
and therefore irrelevant to the applicability of the rule. This is why a rule is not a reaction. The left- and
right-hand sides of a rule are usually patterns—partially specified molecular species. Hence, a rule
subsumes many possible reactions.

As mentioned, an A can modify both sites of C once it is bound to them. However, only an A boundto a B
can connect to a C on x1 and only a free A can connect to C on x2. Note also that site x2 is available for
binding only when x1 is already modified.
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Figure 3: Simulation of the ABC model. The population of unmodified Cs (observable Cuu in red) drops
rapidly and is replaced, at first, by simply modified Cs (observable Cpu in green), which are in turn replaced
by doubly modified Cs (observable Cpp in blue). The population of AB complexes (observable AB in black)
stabilizes slightly below 400 individuals after about 20s.

We will call this model “ABC” and shall use it to illustrate concepts in others sections of this manual. For
now, let us simply run “ABC”. To this end, download the KaSim executable for your operating system. At
its core, KaSim implements a continuous-time Monte Carlo (Gillespie) simulation.

One possibility is to run for 100,000 interaction events (10 times the number of agents in the initial system)
using the command line:

> KaSim ABC.ka -u event -1 100000 -p 1000 -o abc.csv

Another possibility is to push the start button on the online UI and switch to the plot tab to see the
developing trajectory of the observables. The command line produces a csv output file whose contents can
be plotted by any number of tools, such as gnuplot. From Figure 3 we see that the observables have
become stationary after 250 (simulated) seconds. We could therefore specify a meaningful time limit
instead of an event limit in subsequent simulations:

> KaSim ABC.ka -1 250 -p 0.25 -o abc.out


https://kappalanguage.org/download

2 The Kappa language

We overload the term Kappa language (or Kappa for short) with both a broad and a narrow meaning. In a
narrow sense, Kappa refers to a language for specifying patterns of certain graphs—"site graphs”. The
narrow sense also includes rules that specify the rewriting of such patterns. Understood in a broad sense,
Kappa includes the above plus a collection of declarations with which inputs are provided to the simulator
KaSim. These inputs enable the execution of a model and the observation of its behavior. It should be
clear from context which sense we mean.

A Kappa model consists of a set of files whose concatenation constitutes the Kappa input file or KF for
short. The KF serves as input to the Kappa tool in question, usually KaSim. This input could be a single
file, but splitting it up can be convenient.

A KF consists of declarations, which can be
* rules (section 2.3)
* variables (section 2.4.1)
* signatures of agents (section 2.4.2) and tokens (section 2.4.5)
* initial conditions (section 2.4.3)
* intervention directives (section 2.5)
* configuration settings (section 2.4.4)

The structure of the KF is quite flexible. The order of declarations is not important with the exception of
variable declarations and intervention directives as detailed in sections 2.4.1 and 2.5, respectively).

Comments work much like in the C language. A comment can start with a // marker, which instructs
KaSim to ignore the remainder of the line. A /* comment */ can also be placed between a pair of
matching delimiters.

In the following sections, formal grammars (BNF forms) are used to define various language elements. All
grammars are gathered in Appendices A and B for quick reference. Terminal symbols are in red. Optional
expansions are enclosed in square brackets. The symbol € represents the empty list.

The substantive language element in the context of a model is a rule. But to discuss rules, we first need to
work through elements of Kappa from which rules are built, specifically identifiers and patterns. After
having defined Kappa rules, we proceed with Kappa declarations and intervention directives that complete
Kappa in the broad sense—the input language to the simulator KaSim.

2.1 Names and labels

The name construct (Name) refers to any string generated by the regular expressions indicated below. It is
used to name agents, sites, states, and variables. The (Label) construct is similar, but must be in single
quotes. It can contain any sequence of characters, excluding the newline or the quote characters. A (Label)
is used to name rules.

Grammar 1: Names and labels

(Name) w=lazA-Z][a-zA-Z0-9 ~—+]= // cannot start with a digit
| [ J][azA-Z0-9 ~—+]+ // initial underscore can’t stand alone
(Label) =" \n’ ]+~ //no newline or single quote in a label




2.2 Pattern expressions

A Kappa expression denotes a site graph. In a site graph, nodes possess a set of sites, called the interface of
the node. The sites, not the nodes themselves, are the endpoints of edges, Figure 4. A site graph formalizes
the resources that an interaction requires, such as physical surfaces in the case of a binding interaction.

The name of an agent denotes its type. Thus, RAS denotes a type of protein, not a specific instance. To tell
it from other instances of the same type, a node in a graph has an associated identifier (node id). The node
id is (typically) not explicitly mentioned in graphical or line-oriented expressions as it is implicit in the
node layout or the sequence of agent occurrences, respectively.

Grammar 2: Pattern expressions

(pattern) 1= (agent) {more-pattern)
{agent-name) = (Name)
(site-name) = (Name)
(state-name) = (Name)

(agent) = (agent-name) ( {interface) )
(site) = (site-name) (internal-state) {link-state)
| (site-name) (link-state) (internal-state)
| (counter) // see Grammar 14
(interface) = (site) (more-interface)
| €
(more-pattern) = [,] {pattern)
| €
(more-interface) = [,] (site) {more-interface)
| €
({internal-state) = { (state-name) }
| {#) // wildcard
| €
{link-state) = [ {number) |
| [-]
| [_]
| [#] // wildcard
| [ (site-name) . {(agent-name) |
| €
(number) = neNp

We distinguish two kinds of site graphs: contact graphs and patterns. A contact graph is a site graph where
every agent node has a different name and a site can be the endpoint of multiple edges. Contact graphs
represent a static summary of all agent types that occur in a model alongside their potential binding
interactions. The contact graph is the diagram that is displayed in the Kappa Ul on the right side of the
model editor. A pattern, on the other hand, is a site graph that can contain multiple nodes with the same
name, representing different agents of the same type, but each site can be the endpoint of at most one edge.
A pattern is meant to represent a partially specified molecular species, which is to say a realizable object
whose resources are single-use at any given moment. A full-fledged molecular species is represented by
the special case of a pattern in which every agent exhibits all its sites in a definite state.




It bears emphasis that all sites of an agent must have distinct names. (The interface is a set, not a multiset.)
As a consequence, an embedding (or matching) of a connected site graph into another (i.e. a sub-graph
isomorphism) is completely defined by the matching of a single node. (Kappa sub-graph isomorphisms are
in P.) We call this property the rigidity of Kappa. Rigidity is critical for the efficiency of the Kappa
platform.

plain graph site graph (contact graph) site graph (pattern)

Figure 4: The concept of plain graphs and site graphs. A: In a plain graph edges directly connect nodes.
B: In a site graph, nodes possess sites (lower-level nodes) that act as endpoints of edges. One can think of a
site graph as a refinement (a higher level of resolution) of a plain graph. In a contact graph, every node type
occurs exactly once and a site can exhibit more than one edge, summarizing all its interaction partners. C:
A pattern allows for multiple nodes of the same type to occur, but a site can exhibit at most one edge (and
some sites might not be mentioned at all).

According to grammar 2, the anatomy of a Kappa pattern is as follows.

* An agent expression consists of its type (the name of the agent) followed, between parentheses, by a
list of site names (optionally comma-separated).

* The state of a site is specified after its name. We distinguish two kinds of states: an internal state
(usually representing a modification state) and a link state (usually representing a bond). The order
in which they are specified is not significant.

» The internal state of a site is a label written between curly braces, for example {happy}.

» The link state of a site is usually a non-negative integer written between square brackets, for example
[42]. Refer to ({/ink-state) in Grammar 2 for more options and consult the examples below.

* An edge is identified by an arbitrary non-negative integer n that is unique in the scope of the pattern.
The two sites that are the endpoints of an edge exhibit its label as a link state. Thus, in a pattern
expression, each link label appears exactly twice.

» The link state of a site that is unbound (free) is written asadot: [.].

2.2.1 Examples

The idea of a pattern is to leave some state unspecified (”don’t care, don’t write”), as exemplified next.

» A(x[.],z[.]) means an agent of type A whose sites x and z are free but whose internal state is
left unspecified (Figure 5, graph I). What exactly an expression leaves unspecified is relative to the
agent signature (Grammar 9) and ultimately the rules. If in our example A’s sites can have no
internal state and there are no sites other than x and z, then nothing is left unspecified and the
expression is also a molecular species.

» A(x[.],z) means that both the internal state and the binding state at z are unspecified. This is the
same as writing A (x[.]).



» A(loc{membrane},z{p}[0]),B(loc{cytosol},x[0]) denotesacomplex of two agents
bound to each other, the bond having the label 0. Agent A’s site 1oc in state membrane, so maybe
this could be taken as crude localization information. A’s site z is in state p (phosphorylated, say)
and bound to site x of agent B located in the cytosol; so maybe this pattern refers to a
transmembrane protein.

» A(x{u} [#]) means agent A whose site x is in state u and explicitly in an unspecified binding
state (Figure 5, graph II). In the context of pattern expressions, this is the same as writing A (x{u}).
The rationale for the pound sign (wildcard) will be discussed in the context of rules, section 2.3.

» A(x[1],y[3]),Aa(x[2],y[1]),A(x[3],y[2]) isa three-membered ring made of agents
of type A (Figure 5, graph III).

» A(x[1],y[_1),A(x[1],y[.]) isadimer of As, in which one A is bound to an unspecified
agent at site y (Figure 5, graph V).

» A(x[.],yv[x.B]) means A is free on site x and bound to the site y of some B. However, the
so-called “binding type” x.B (sometimes also called a “bond stub’) only specifies the binding site
and #ype of the bound partner and nothing else (Figure 5, graph V).

/\ Careful: The binding type construct is best understood in the context of matching a pattern,
section 3.1. Suffice it to emphasize here that the difference between 22 =A (y [x.B] ) and

P =A(y[1]),B(x[1]) isthat % refers to an agent with name B as a stoichiometric resource,
whereas &2, refers to the type (here B) of bound agent. A type is not a stoichiometric resource. For
example, the binding type x.B in the pattern A (x[.] ,y [x.B]) ,B(y[.]) may refer to the
B-agent explicitly mentioned in the pattern (that’s B (y [.]) or it may refer to a second B-agent,
outside the pattern. Likewise, the binding types in A (x [y.B] ), C(z [t.B]) may refer to one and
the same or two distinct Bs.

2.2.2 Other notations and renderings

When discussing Kappa expressions abstractly it is more succinct to use a “mathematical” notation instead
of ASCII. In the math notation, bond labels become superscripts of sites and internal states become
subscripts. For example, the expression for the three-membered ring reads Ax, y3), A2, yl),A(xg, 2). The
ASCII expression A (b{p} [x.C]),B(al[.]),C(y{u}) becomes A(bg'c),B(a'),C(yu).

Ax[.1,y0.1)  AGx{u}#]) = A(x{u}) A(x[1],y[31), A(x[2],y[1]), A(x[3],y[2]) AG&x[11,y[_ 1), A(x[1],y[.D) A(x[y.Bl)
o >4 o
e
[a ": a4 8.

| Il v \%

Figure 5: Patterns. Examples of Kappa patterns described in section 2.2.1. In graph III, the numbers labeling
the edges are not part of the graph, but only serve to illustrate the labeling scheme in the line notation.

Kappa expressions are line-oriented encodings of site graphs. In graphical displays we indicate the free
(unbound) state of a site with a “bond” to a dot, which stands for “nothing” (Figure 5 I). A site whose
binding state is unspecified is simply shown without any binding state (Figure 5 II). If the site is bound to
some unspecified agent type (an underscore in the line notation), it is shown with a bond to an unnamed
orphaned site (Figure 5 IV). A binding stub is a bond to a named site that belongs to an outlined agent type
(Figure 5 V). Occasionally, to reduce clutter, we omit the names of sites. When we do so, we will assume an



implicit naming derived from the geometric position of the site on the agent. This works best with few sites
that can be arranged on geometric landmarks of an agent. For example, if an agent is drawn as a square, the
sides (E, W, S, N) or corners (NE, NW, SE, SW) might implicitly serve as site names. On the other hand, if
a site is explicitly named, then the position on the agent has no meaning. In any case, graphical renderings
are up to the modeler (or the interface designer), as they are not directly parsed by KaSim.

2.3 Rule expressions

Rules have the basic shape £ — Z%. The intended meaning is that the right-hand side graph 2 replaces the
left-hand side graph £. This replacement usually occurs in the context of a larger graph ¢ (for example
representing a molecular species) that matches .£. Matching here means that £ is subgraph-isomorphic to
¢. We define matching in section 3.1, but the intuitive meaning should be fairly obvious.

There are two ways of specifying rules:

1. The “arrow notation” (or chemical format): This is the familiar format, £ — £, in which the
“before” (£) and the “after” () are two pattern expressions (section 2.2). The arrow requires a
mapping between £ and £ that specifies which agents in £ corresponds to which agents in 2. If
an agent appearing in £ has no correspondence in 2, the rule destroys that agent. Likewise, if an
agent appearing in & has no correspondence in .Z, the rule creates (an instance of) that agent. The
grammar of the arrow notation and its interpretation make this mapping explicit.

2. The “edit notation” is more compact and avoids the need of a mapping between two pattern
expressions by simply writing edit directives into the “before” pattern. This also avoids errors that
might arise when duplicating the invariant part of the £ pattern on the right in the arrow notation.

Both styles are understood by the parser and can be freely mixed. Regardless of style, rules can be prefixed
by a name and must end with rate information.

For discussing the anatomy and expressiveness of rules it suffices to assume for now that the expression
(rate) in Grammars 3 and 4 is simply a number k € R. We discuss the meaning of a rate in Kappa in section
3.5 and algebraic expressions, which can be used to express rate functions, in section 2.4.1.

There are three flavors of rules.

1. Forward rule: This is the standard one-way format read from left to right (—) in the arrow notation.
It requires one rate expression denoting the forward rate of the rule. To express a mechanistically
exactly reversible interaction, one would use two forward rules in which the patterns on the left and
right are swapped. This can be achieved more compactly using the reversible rule format (below)?.

2. Reversible rule: This format expresses a mechanistically reversible interaction and is a shorthand for
two forward rules in which the left and right are swapped. It requires two rate expressions, one for
the forward and one for the backward rate of the rule.

3. Rule with ambiguous molecularity ("ambi-rule”): A rule expresses a mechanism, and a mechanism
is essentially a Jocal interaction. Local means that all context necessary for an interaction is
explicitly specified. This can lead to an ambiguity regarding the number of distinct molecular
species involved in an interaction, which, in biological applications, affects how a rate constant
scales with volume. An “ambi-rule” requires two rate expressions, unless it is reversible (at which
point it requires three or four, depending on whether the reverse direction is also ambiguous).
Ambi-rules will be discussed in more depth in section 3.7, but see the last example in section 2.3.1.1.

21n situations far from equilibrium, certain interactions are modeled as irreversible. The undoing of such an interaction is often
achieved by a different mechanism altogether, which is not a case of reversibility. For example, a phosphorylation that requires a
bound kinase is often undone by a dephosphorylation that requires a bound phosphatase.



2.3.1 Arrow notation

The syntax of the arrow notation is specified in Grammar 3.

Grammar 3: Rule expressions in arrow notation

(f-rule) 2= [ (Label) | (rule-expression) [ | {token) | @ (rate)
(fr-rule) 2= [ (Label) | (rev-rule-expression) [ | {token) | @ (rate) , (rate)
{ambi-rule) 2= [ (Label) | (rule-expression) [ | (token) ]| (@ (rate) { (rate) }
(ambi-fr-rule) 2= [ (Label) ] (rev-rule-expression) [ | (token) | @ (rate) { {rate) } , (rate)
(rule-expression) 2= ((agent) |.) (more) ( {agent)|.)
(more) =, ((agent)|.) (more) ({agent)|.),

| —>
(rev-rule-expression) 2= ((agent) | .) (rev-more) ( {agent) | .)
(rev-more) =, ((agent) |.) (rev-more) ( {agent)|.) ,

| <->
(rate) 2= (algebraic-expression)

As mentioned, the arrow notation requires an explicit mapping between agents on the left and agents on the
right. This is achieved by requiring the same number of comma-separated “slots” on both sides of the
arrow. A slot is either occupied by an agent or it is vacant, in which case it is represented by a lonely
dot-symbol between commas. Thus,

'rule’ A(x[.]1), B(x[.]) —> A(x[1]), B(x[1l]) @ 0.001
// #1L #2L #1R #2R

Slots are imagined as numbered from left to right on each side of the arrow with the first slot on the left
(#1L) mapping to the first slot on the right (#1R); the second slot on the left (#2L) to the second slot on the
right (#2R); etc. From the viewpoint of the pattern grammar (Grammar 2), A (x[1]) ,B(x[1]) and
B(x[1]),A(x[1]) mean exactly the same thing: an A bound to a B at their respective sites x.
However, if we were to swap A (x[1]) ,B(x[1]) with B(x[1]),A(x[1]) inrule 'rule’, the parser
would throw an error because of an agent mismatch.

@ '‘error’ A(x[.]), B(x[.]) —> C(xI[1]), B(xI[1l]) @ 0.001
// #1L #2L #1R #2R

A rule cannot transmute one agent type into another.

For the sake of completeness: The naming of a rule (here 'rule' or 'error') is arbitrary and optional.
The number after the @-symbol is the forward rate constant associated with the rule. The number 1 on the
right appears exactly twice, as it identifies a bond with two endpoints. This edge identifier can be an
arbitrary non-negative natural number.

2.3.1.1 Examples

A few examples will convey a sense for rules in the arrow notation.
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» ‘asymmetric dimerization’
A(x[.1), A(y[.]) —> A(x[1]), A(y[1]) @ 0.001
'symmetric dimerization’
A(x[.]), A(x[.]) —> A(x[1]), A(x[1]) @ 0.001

These are simple dimerizations between two As. In rule 'asymmetric dimerization' the two As
bind each other asymmetrically—one uses site x, the other site y. The repeated application of this
rule to an initial pool of free As will result in polymerization. On the other hand, the repeated
application of the rule 'symmetric dimerization' will result in a population of strict dimers.
The example also shows that rules can extend over multiple lines without the need for a continuation
character.

» ‘conditional asymmetric dimerization’
A(x[.1), A(y{p}[.]1) —> A(x[1]), A(y{p}[1l]) @ 0.001

Here the binding depends on site y not only being free but also being in state p (phosphorylated,
say). This could allow moderation of the polymerization degree through the activity of another rule
that phosphorylates A and site y.

» '‘degrade’ A(x[1]), A(y{p}[1l]) —> . , A(y{p}[.]) @ 0.001

A binding partner is destroyed. This removes the bond labeled 1; in fact, it removes a// bonds the
destroyed agent might have entertained with other agents not mentioned in the rule. Be aware of
potential side effects!

» ‘create’ A(xI[.]), . —> A(x[1]), A(y{p}[1l]) @ 0.001

An additional A is created and bound to the A mentioned on the left. If the internal state at y is not
specified, the freshly created agent would have a default state. The default state can be defined in the
agent signature (section 2.4.2).

» 'forcel’ A(y{#}) —> A(y{p}) @ 0.001
@ ’'nonol’ Al(y) -> A(y{p}) @ 0.001
@ ‘nono2’ A() > A(y{p}) @ 0.001
"force2!’ A(y[#]), B(x[.]) —> A(yI[1l]), B(xI[1l]) @ 0.001

In these examples we force a site into a definite state. The symbol (#) is a “wildcard” and means an
unspecified state. Rule 'forcel' puts site y from an arbitrary internal state into a definite state p.
Assuming that the permissible values at y are {u,p}, 'forcel’ really acts as if it were two rules (a
refinement or split by cases):

"refinementl’ A(y{u}) —> A(yi{p}) @ 0.001
"refinement2’ A(y{p}) —> A(y{p}) @ 0.001

Upon matching an unphosphorylated A, 'forcel' phosphorylates it; but matching an already
phosphorylated A results in no change. Yet, from the point of view of simulation (section 3), the “no
change” event (i.e. the firing of 'refinement2') is an event that advances the simulated time. Rule
'forcel' phosphorylates A at the same rate as 'refinement1' alone, but is computationally more
expensive because of the null events.

Although the pattern A (y {#}) is equivalent to A (y), the parser will reject rule 'nonol' based on
the rationale that A (y) is too error prone a construct in the context of a rule. It is easy to forget
specifying a particular state for a site, which results in semantic errors that can be difficult to find in a
complex model. This justifies the explicit symbol (#) for deliberately asserting an unspecified state.

11



The same reasoning applies to rule 'nono2': Sifes that appear on the left must appear on the right
and vice versa or the parser will raise an error.

Finally, 'force2" illustrates the forcing of a binding state.

'side effect’ A(x[_1) —> A(x[.]) @ 0.001
"also side effect’ A(x[y.B]) —> A(x[.]) @ 0.001

This is the forcing of an underspecified (binding) state. Perfectly legal. However, by unbinding A at
site x any agent at the other end of the bond is disconnected from A as well. In the context of rules,
the underscore (’__’) has a side effect in the sense that the rule modifies the state of an agent not
explicitly mentioned. The underscore can be quite useful provided the user is aware of the scope of
side effects. The so-called “binding type”, as in rule 'also side effect', is often used in lieu of
the underscore. It specifies the site and type of the agent at the other end of a bond without including
the agent itself in the expression. This improves readability and provides a minimum of type safety.

‘many modifications at once’
A(y{#}I[11), . , B(x[1]l,y[_1), c() —>
A(y{p}[7]), D(glO]), B(xI[O],y[7]), . @ 0.001

In a useful model, rules are mostly “elementary”, meaning that they represent one single action,
albeit guarded by a possibly complex condition. The above rule is the opposite; a multi-action rule in
which many changes occur simultaneously (including a bond swap to a newly created agent). While
perfectly legit, it seems a rather absurd mechanism. This said, in some situations multi-actions are
unavoidable. For example, when destroying an agent or when expressing the fusion of two chains
(Figure 6).

@ ’'nonsense’ A(x ) —> A(x[_]) @ 0.001

@ ’'bidirectional nonsense’ A(x[#]) <—> A(x[_]) @ 0.001, 0.001
@ ’'more nonsense’ A(x ) —> A(x[y.B]) @ 0.001

@ ’'not allowed’ A(x{p}) —> A() @ 0.001

The rule 'nonsense' puts a defined state (unbound) into an underdefined state. The problem here is
that while the action could be executed in principle by choosing a random agent and bind it to A, it
no longer represents a deterministic mechanism. In the reverse direction of 'bidirectional
nonsense', the underscore is replaced by #. A mechanism in which an agent forgets the state it is in
makes little physical sense (and what happens to whoever is bound to A?). The forward direction is
not meaningful either (in analogy to 'forcel', the forward direction of 'bidirectional
nonsense' can be refined, one case being 'nonsense'). The rule 'more nonsense' does not
execute in a predictable way either. For example, the simulator might pick a random B to attach to A,
but nothing guarantees that the picked B is free at site y, at which point it would have to try again.
Finally, 'not allowed' is semantically a “no operation”—it does nothing—but violates the
constraint that sites appearing on the left of a rule must also show up on the right.

'reversible association’

K(s[.]1),s(el.],x{u}) <—> K(s[1]),S(ell],x{u}) @ 0.001, 0.1
"phosphorylation’

K(s[1]1),8(el[1],x{u}) —> K(s[1]),s(ell],x{p}) @ 0.1
"dephospho’

S(x{p}) —> s(x{u}) @ 0.001

The meaning of bidirectional rules is obvious. Their purpose is to save writing, but remember to add
rate information for the reverse interaction. Yet, in biological applications far from thermodynamic
equilibrium, one uses uni-directional rules when the state conditions in one direction differ from

12



those in the (functionally) “opposite” direction. For example, rule 'phosphorylation' changes the
state of substrate S when in a complex with kinase K. Perhaps the only route for S to revert back to
state u is to spontaneously dephosphorylate, as in 'dephospho'. In this case, phosphorylation and
dephosphorylation are not mechanistically opposite to each other.

» ‘ambiguous molecularity’
A(x[.]), A(y[.]) —> A(x[1]), A(y[1l]) @ 0.001 {0.1}

We return to the example of asymmetric dimerization. As pointed out, when repeatedly applied to a
pool of initial A-agents, this rule will generate polymers because it does not care whether any of the
two A-agents is already bound to others at the respective site not mentioned. In particular, the rule is
oblivious of whether the two A are the two ends of a single chain. In that case, it will convert the
chain into a ring (with the same number of protomers). In rule 'asymmetric dimerization' the
two distinct reaction instances induced by the rule occur with the same rate constant (as only one is
suplied). Yet, chemically, the elongation of a chain is a bi-molecular interaction, involving the
collision between two entities, whereas the ring formation is a uni-molecular interaction involving no
collision at the “entity”’-level of abstraction. Chemically, this warrants two distinct rate constants, as
they must scale differently with the system volume the user might choose (section 3.5). If the uni-
and bi-molecular applications of a rule should be kinetically distinguished, the user must supply rate
information for the uni-molecular case in curly braces. The rate syntax is y» {y;} with y, the
bi-molecular rate constant (or function) and y; the uni-molecular rate constant (or function). If only
one rate is supplied, no distinction is made between the two cases. Rules with ambiguous
molecularity require KaSim to track appropriate information to correctly implement the stochastic
kinetics. This can slow down simulation considerably; see section 3.7.

We end with a more complex example to exercise the Kappa muscle. Imagine two agents, each carrying a
polymeric tail. The agents bind, and one agent concatenates its polymeric tail to that of the other as
illustrated in Figure 6A. This scenario occurs between E2 ligases that carry ubiquitin chains. Making a rule
that specifies such a transfer between polymer tails of defined length is straightforward. For example, the
following rule concatenates a tail of length 2 and a tail of length 3:

1 2+3"

E(e[l],start([2]),U(h[2],t[6]),U(h(6],t[.]),
E(e[l],start([4]),0(h[4],t(7]),Uh(7],t(8]),U(h(8],t[.])

—>

E(e[l],start[.]),U(h[2],t[6]),U(h[6],t[.]),
E(e[l],start([4]),U(h[4],t([7]),Uh([7],t[8]),U(h(8],t[2]) @ 0.001

The protomers of type U form head-to-tail chains. The transfer of one chain to the end of the other occurs
by first releasing the bond between the head (h) of the first protomer in a chain and its carrier and then
binding it to the free tail (t) of the other chain (Figure 6A). This, however, implies a distinct mechanism
(i.e. a separate rule) for any pair of polymer lengths, which seems unlikely. Figure 6B slightly generalizes
the rule '2+3' to 'm+3"', which adds a chain of length 3 to a chain of arbitrary length m. The chain of
length m only shows up with the unit that attaches to the carrier E. This suffices because the chain of
length three is represented explicitly, thus specifying the (free) tail point for attaching the m-chain. Next is
an encoding, 'm+n bloated' (also rendered graphically in Figure 6C) for concatenating two chains of any
length with a single rule, hence a single mechanism.

‘'m+n bloated’

E(e[l],start[2],end[3]),U(h[2],t[h.U],1[.]),U(hlt.U],t[.],110[3]),
E(e[l],start[6],end[5]),U(h[6],t[h.U],1[.]),UChl[t.U],t[.],

—>

E(e[l],start[.],end[.]),U(h[2],t[h.U],1([.]),UCh[t.U],t[.],1([5]),
E(e[l],start[6],end[5]),U(h[6],t[h.U],1[.]),Uh[t.U],t[2],1[.]) @ 0.001

13



It is perhaps instructive that to accomplish a generic concatenation required introducing a new site (a new
logical resource), end, that points to the end of a chain. (Likewise, a new complementary site 1 is
required for agents of type U.) This is because both chains have unspecified length. The fictitious sites
end, 1, and the bond between them can be interpreted as information about the “location” of the tail of a
chain of arbitrary length. A system of interactions that constructs chains in this manner is guaranteed to
have U; (the agent of type U with identifier 1 in Figure 6C) connected to Us, despite this not being explicit
in the pattern. (The same holds for the other chain.) We can exploit this behavior to completely omit the
binding types. In addition, upon reflection, several sites appearing on the left of the rule in Figure 6C need
not be mentioned, as they are not necessary conditions for concatenation. These observations yield a more
succinct version shown in Figure 6D.

'm+n minimalist’
E(e[l],start[2],end[3]),U0(MI([2]),0(1[3]),
E(e[l],start[6],end[5]),U(h[6]),U(1[5],t[.]1)

—>

E(el[l],start[.],end[.]),U(h[2]),0(1[5]),
E(e[l],start[6],end[5]),U(h[6]),U(1[.]1,t[2]) @ 0.001

A 2+3

C

D  m+n (minimalist)

Figure 6: Transfer of chains. A: The transfer of a chain from one agent E onto the end of the chain of
another proceeds by head-to-tail concatenation (rule '2+3"). B: The transfer of a chain of length m onto a
chain of length 3. C: The transfer of one chain onto another when both have unspecified lengths requires
that the agents E keep information about the tail ends of their chains. D: A minimalist rule for concatenating
two chains of arbitrary length. Note that the right hand side consists of two disconnected patterns although
the molecular species produced by the underlying reaction is connected.

It is worth emphasizing again that 'm+n bloated' and 'm+n minimalist' are not the same rule, despite
both concatenating two strings of arbitrary length. They express the same principle, but they don’t express
the same mechanism. For example, 'm+n bloated' requires that sites 1 and t of agents U; and U, be
free, whereas 'm+n minimalist' does not. This innocuous seeming difference may have consequences
when the rules act in the context of others. Some other rule might bind an agent C to site 1 of Uj, in which
case subsequent concatenations would be blocked under 'm+n bloated' but not under 'm+n
minimalist'. While this might be unlikely when U is ubiquitin, it should convey appreciation for the idea
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that the conditions for interaction expressed by a rule—i.e. the states tested but not modified—are as
important as the action itself (the modification or difference between left and right side).

2.3.2 Edit notation

In the edit notation (Grammar 4), state modifications are directly indicated for each site with a “before” /
“after” syntax; agent destruction (creation) is annotated with a ’—’ (’+”) sign following the respective
agent. The edit notation has no bi-directional rules; these must be written as two uni-directional ones.

Grammar 4: Rule expressions in edit notation

(f-rule) == [ (Label) | {f-rule-expression) [ | {token) | @ (rate)
{ambi-rule) == [ (Label) | {f-rule-expression) [ | (token) | @ (rate) { (rate) }
(f-rule-expression) = (agent-mod) (more-agent-mod)

| €
(more-agent-mod) =, {agent-mod) (more-agent-mod)

| €
(agent-mod) = {agent-name) ( (interface-mod) )

| (agent-name) ( (interface) ) (+ | —)

(site-mod) 1= (site-name) (internal-state-mod) {link-state-mod)
| (site-name) (link-state-mod) (internal-state-mod)
| (counter-name) {counter-state-mod)

(interface-mod) 1= (site-mod) {more-mod)
| €
{more-mod) ©=, (site-mod) {(more-mod)
| €
(internal-state-mod) 2= { ((state-name) | #) / {state-name) }
| { ((state-name)) }
| €
(link-state-mod) 2= [ ({number) | .| | (site-name).{agent-name) | # )/ ({number) | . ) |
| (link-state)
| €
(counter-state-mod) 2= { {counter-expression) | {counter-mod) }

| { {counter-expression) }
| { {counter-mod) }

(rate) == (algebraic-expression)

2.3.2.1 Examples

Rehashing a few of the examples given in the arrow notation should convey a sense for the edit notation.

» ‘asymmetric dimerization’ A(xI[./1]1),A(y[./1]) @ 0.001
» ‘degrade’ A(x[1])-, A(y{p}[1l/.]) @ 0.001

» ‘create’ A(xI[./11), A(y{p}[1l])+ @ 0.001

15




» ‘'many modifications at once’
A(y{#/p}[1/71), D(ql0])+, B(x[1/0],y[_/71), C()— @ 0.001

» ’‘dephospho’ S(x{p/u}) @ 0.001
» ‘also side effect’ A(x[y.B/.]) @ 0.001
» ‘ambiguous molecularity’ A(x[./11), A(y[./1]) @ 0.001 {0.1}

» ‘'m+n minimalist’
E(e[l],start[2/.],end[3/.]),U(h[2]),U(1[3/5]),
E(e[l],start[6],end[5]),U(h[6]),U(1[5/.]1,t[./2]) @ 0.001

2.3.3 Counters

The core of Kappa is deliberately small, if not minimal: Agents, sites, and two types of actions and their
reverse (binding and internal state modification)®. One consequence of this terseness is the possibility of
formal analysis; one drawback is that some biophysical aspects of importance to biology are not captured
“naturally”. Expressing certain dependencies can still be combinatorial. For example, in core Kappa, one
cannot directly express a pattern in which, say, A is phosphorylated at 5 of its 10 sites. Consequently, there
is no direct way of asserting that “A binds B if 5 of 10 sites of A are phosphorylated”. It appears that one
might have to list all “10 choose 5” (=252) combinations as separate rules. In actuality it is not that bad if
one tolerates “encoding”, which is the use of agents, sites, and rule actions that have nothing to do with
biological mechanisms but only with accounting mechanisms, i.e. with managing “counters”. For example,
to implement a counter that tracks the number of phosphorylated sites of an agent, one can attach a chain of
dummies to an agent and add or remove a dummy alongside a phosphorylation or dephosphorylation event,
respectively. In this way, “A binds B if 5 of 10 sites of A are phosphorylated” is a rule whose left hand side
exhibits a pattern with a chain of exactly 5 dummies. This, of course, is tedious to do by hand. To avoid
this headache, Kappa provides an experimental construct {countery, whose grammatical terms show up in
Grammars 2 and 4. At present, the simulator internally translates counter constructs into chains just as
described (but the static analyzer KaSa deals with them abstractly) This construction does not cause much
of an overhead during simulation—especially with the latest algorithms implementing the Kappa
simulator—and is hidden from the user’s view in state dumps (section ??) and causal analysis (section ??).

Because of the experimental character of counters at the time of writing, their description is consigned to
appendix C.

2.4 Kappa Declarations

Sections 2.1-2.3 covered the Kappa language in the narrow sense, which is mainly concerned with
graph-rewriting. The core language is suited for reasoning formally about static properties (section ??) of
rule-based models. One purpose of the Kappa platform is to enable the simulation of models and the
exploration of their dynamic properties. Unlike in static analysis, rate constants play a role in simulation
and we need more flexible ways of defining rates. Moreover, we need to specify observables, initial
conditions, and, importantly, interact with the model by specifying interventions both scheduled in advance
and in real-time. In short, we need to be able to experiment with the model. This is the purpose of Kappa
declarations, which, together with the core language, constitute Kappa in the wider sense.

30ne could dispense with the distinction between binding and internal state modification and consider the latter as a form of
un/binding that (typically) requires a third agent—an enzyme—to occur. However, this difference is sufficient to warrant state
modification to be a separate action.
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2.4.1 Variables, algebraic expressions, and observables

Many components of KF rely on the declaration of variables. For example, variables might be used as
model parameters: If a user redefines the system volume, stochastic rate constants of bimolecular
interactions need to scale inversely with the volume. It would be useful, then, to be able to declare the
volume as a variable that can show up in an algebraic expressions defining a rate constant.

A variable is declared with the $var : directive (Grammar 5).

Grammar 5: Variable declaration

%var: (declared-variable-name) (algebraic-expression)
(Label) // not (Name)

(variable-declaration)

(declared-variable-name)

The construction of an (algebraic-expression) is defined by Grammar 7.

» // declare a variable
%var: 'pattern matchings’ |A(x[1]),A(x[1]1) |
%var: 'homodimers’ ‘pattern matchings’ / 2

The first declaration defines a variable ' pattern matchings’ as the number of occurrences of
the pattern A (x[1]) ,A(x[1]). This pattern has a symmetry (section 3.2). Whatever site graph,
such as a molecular species, the first A matches, the second can match too. As a result there will be
twice as many matchings than objects of interest. We therefore correct this by dividing the variable
"pattern matchings’ by 2 and call the new variable ' homodimers’. Of course we could
have divided by 2 in the first declaration.

Any variables used in the declaration of another variable must be declared beforehand. Variables can be
used in rate expressions (section 3.8).

Grammar 6: Observable declarations

(plot-declaration)

(observable-declaration)  ::= %obs: (Label) {(algebraic-expression)

%plot: (declared-variable-name)

The value of a variable can be written to an output file (section ??) using the plot: or %obs :
declarations:

» // print a variable
%plot: "homodimers’
An %obs : directive declares an observable, which is a shortcut for both declaring a variable and plotting it.
» // declare an observable (var+plot shortcut)
%obs: "homodimers’ |A(x[1]),Aa(x[11)] / 2
2.4.2 Agent signatures

A signature, Grammar 9, defines the interface of an agent type, i.e. its full complement of sites, including
all internal state values that are possible for each site and all potential binding partners. I also defines
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Grammar 7: Algebraic expression

(algebraic-expression) =

(reserved-variable-name) ::=

(binary-op) =

(unary-op) =

(defined-constant) =
({float) -

{float)

(defined-constant)

(declared-variable-name) // variable must be declared using %var
({reserved-variable-name)

(algebraic-expression) {binary-op) {algebraic-expression)

(unary-op) ( {algebraic-expression) )

[max] ( {algebraic-expression) ) ( {algebraic-expression) )

[min] ( {algebraic-expression) ) ( {algebraic-expression) )
(boolean-expression) [?| {algebraic-expression) [:]| {algebraic-expression)

[E] // productive events since simulation start
[E-] // number of null events
[T] // simulated physical time
[Tsim] // cpu time since simulation start
| (declared-token-name) | // concentration of token
| {(pattern-expression) | // occurrences of pattern
inf // denotes oo
+

*

/

N

[ mod ]

[log]

[exp]

[sin]

[cos]

[tan]

[sqrt]

[pi]

xeER

Grammar 8: Boolean expression

(boolean-expression) =

(boolean) =

(algebraic-expression) (= | <|>) (algebraic-expression)
(boolean-expression) || {(boolean-expression)
(boolean-expressiony && (boolean-expression)

[not] (boolean-expression)

(boolean)

[true]
[false]
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counters. The signature section of a KF lists the signatures of all agents that appear in the rule section.

Unless one uses counters, the signature is not essential information, since the simulator KaSim determines
the agent signatures directly from the rules in the KF.

/\ Careful: The signature section is “all or nothing”: if it is defined for one agent type, it must be defined
for all agent types.

The point of a signature is to provide readability and a simple semantic check. If a user defines an agent
signature, KaSim can compare it to the signature it derives from the rules and issue an error upon
mismatch. Leaving out the signature section is perfectly admissible, but a simple mistake in which the
user’s writing differs from the user’s intention might go unnoticed by the parser and can be difficult to
discover.

Grammar 9: Agent signature

(signature-declaration) 1= %agent: (signature-expression)

{agent-name) 1= (Name)

(site-name) 1= (Name)

{state-name) 1= (Name)

(signature-expression) = (agent-name) ( {(signature-interface) )

(signature-interface) = (site-name) (set-of-internal-states) (set-of-link-states) (more-signature)

| (site-name) (set-of-link-states) (set-of-internal-states) (more-signature)
(site-name) { = (integer) |/ += (integer) }

(more-signature) 2= [.] {signature-interface)
| €
(set-of-internal-states) = { (set-of-state-names) }
| €
(set-of-state-names) = (state-name) _, {(set-of-state-names)
| €
(set-of-link-states) = [ (set-of-stubs) |
| €
(set-of-stubs) = (site-name) . {agent-name) _, (set-of-stubs)
| €

For example, a signature line in the KF might read

» %agent: A(x[a.B y.A]l {u p}, yIx.Al, z{zl z2 z3}) // sig of A
%agent: B(a[x.Al,c{= 0 / += 10}) // sig of B

This signature will declare an agent-type A whose site x can bind agents of type B on site a or
agents of type A (the same agent instance or a different instance of the same type) on site y. The
declaration of potential binding partners in the signature is a situation where the binding type
notation is deployed. Moreover, site x can hold an internal state of two possible values, u and p.
Likewise, site z can hold an internal state with three possible values z1, z2 and z3. (Internal state
names cannot start with a number, Grammar 1.) A counter site ¢ is declared for agent B.

/\ Careful: The use of binding types in the signature is also “all or nothing”: If none of the agent
signatures specifies a binding type, KaSim will not cross-check signature and rules with regard to binding
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consistency. In other words, any site of any agent is allowed to bind any site of any agent as far as semantic
checks go. If some agent signature specifies a binding type, then all signatures must specify all binding

types.

If you are sure that your binding rules express your intentions, you could write the above signature in
abbreviated form:

» Sagent: A(x{u p}, v, z{zl z2 z3}) // sig of A
%agent: B(a,c{= 0 / += 10}) // sig of B

If B had no counter, you could omit the signature entirely and forgo any semantic sanity check.

The agent signature plays one additional significant role: it defines the default state of an agent when it is
created (produced) afresh either by a rule or in an initialization declaration (section 2.4.3) when no further
specifications override it. The default internal state is the first value appearing in the internal state list of a
site. The default binding state is always “free”.

2.4.3 [Initial conditions

For a model to behave dynamically, a set of agents initially present must be specified. We imagine a pool
of agents or complexes that constitute at any given time the state of the system. Rules apply stochastically
to that state (section 3.4), transitioning it to a new state. Transition by transition this process produces a
trajectory of events. The declaration of an initial state is simple and follows Grammar 10.

Grammar 10: Initial condition

(init-declaration) 2= %init: (algebraic-expression) {pattern)
|  %init: {algebraic-expression) {declared-token-name)

The (algebraic-expression) is evaluated prior to the start of the simulation. Hence, all Kappa expressions
(and tokens, section 2.4.5) are evaluated to 0. The %init : declaration will add as many copies of
(pattern) to the system as (algebraic-expression) evaluates to. These copies are added in their default state
as specified in the respective agent signatures (see end of section 2.4.2), unless aspects of the default state
are overridden in the initialization.

» %agent: A(x{u p}, vI[x.B, y.Cl, z{zl z2 z3}) // sig of A
Svar: 'n’ 150
%Sinit: 'n’ A()
%init: 'n’ A(z{z3})
In this example, the creation of 150 instances of A () amounts to 150 instances of the molecular
species in its signature-specified default state A (x {u} [.],y[.]1,z{z1} [.]). (Ifasite hasno
binding interactions, it is obviously free at all times.) The second initialization of A overrides the
default at site z from z1 to z3. Agent numbers add up if $init: is used multiple times. In this
example, the initial state consists of 300 agents of type A, 150 of which have their site z in state z1
and the other 150 in state z3.

2.4.4 Parameters

In section ?? we discuss the KaSim command in more detail. KaSim has a number of options that can be
set on the command line but also from within the KF. For the sake of syntactical completeness we provide
the syntax of simulation parameter definitions here (Grammar 11). Usage examples and a table of reserved
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names and value ranges can be found in section ??.

Grammar 11: Parameters

(parameter-setting) = %def: (parameter-name) (parameter-value)

(parameter-name) ::= reserved names listed in table ??

(parameter-value)

defined range associated with each (parameter-name), table ??.

2.4.5

Tokens and hybrid rules

At the level of abstraction captured by Kappa, biomolecular processes can span several time and
concentration scales. For example, molecular species, such as ATP, redox couples like NADP*/NADPH, or
various ions are often abundant relative to those agents that are of principal mechanistic interest in a model.
Kappa provides a way of treating such species as pool variables with continuous values. They are called
tokens and give rise to “hybrid rules” in which the mechanistic part of the rule is linked to a change in
token values: Each time a rule fires it not only modifies a graph pattern but also causes an update in token
values. Tokens are structureless species (basically a proper name) and their value can be referred to in rate
expressions.

Grammar 12: Tokens

(token) = (algebraic-expression) (declared-token-name) {(another-token)
{another-token) =, ({token)
| €
{declared-token) = %token: {(declared-token-name)
(declared-token-name) 1= (Name)

An example might clarify the intent.

>

%Stoken: ATP
%$token: ADP
%init: 9.6 ATP // mM per E. coli cell, about 1E7 molecules
%init: 0.55 ADP // mM per E. coli cell, about 1E6 molecules
// arrow notation
"hybrid rule a’ S(x{u}[1]),K(yI[1]) —>
S(x{p}[1]),K(yI[1]) | -1E-6 ATP +1E-6 ADP @ 'k’
// edit notation
"hybrid rule e’ S(x{u/p}[1]),K(y[1]) | —-1E-6 ATP +1E-6 ADP @ 'k’

The names ATP and ADP are declared as tokens and initialized much like structured agents. In this
example we imagine a kinase K phosphorylating a substrate S to which it is bound in an E. coli cell.
The concentration of ATP in such a cell is about 9.6 mM, which corresponds roughly to 107
molecules; the concentration of ADP is roughly 0.55 mM (about 10® molecules). Upon
phosphorylation, 1 molecule (roughly 1 nM = 10~® mM) of ATP is consumed and 1 molecule of
ADP produced. Thus the change in terms of mM values is —10~% for ATP and +107% for ADP, as
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indicated in the hybrid rule after the vertical bar.
A few points should be kept in mind at the current state of implementation:

* The propensity of the hybrid rule to fire (section 3.3) does not automatically depend on the
concentration of tokens even though they are mentioned. If a user wishes to create a dependency,
then the rate constant must be an explicit function of the token concentration.

* The simulator does not perform any checks on whether the token concentration stays non-negative.

* The change of a token can be an (algebraic-expression), which means that tokens can change as a
function of anything else in the system, including other tokens. Use with caution, as a model should
be transparent.

» Tokens are an experimental feature. Please give feed-back if you run into problems.

2.5 Intervention directives

The simulator KaSim executes an event loop (section 3.4) whose basic cycle consists of advancing the
simulated wall-clock time, selecting a rule for application, and computing updates to reflect the result. It is
useful being able to intervene in a simulation by scheduling perturbations, such as injecting a certain
number of agents of a given type or modifying a variable, or invoking data reporting tasks. To this end,
Kappa provides a mini-language for specifying interventions and their timing. Some of these constructs can
also be used to interact with KaSim while the simulator is running. The syntax is given in Grammar 13.

Grammar 13: Intervention directives

(effect-list) = (effect) ; (effect-list) | €

(effect) == $SADD (algebraic-expression) {pattern)
| $DEL (algebraic-expression) {pattern)
| S$APPLY (algebraic-expression) (rule-expression) [ | {token) ]
| $SNAPSHOT (string-expression)
|  $STOP (string-expression)
| $DIN (string-expression) {(boolean)
| S$TRACK (label) {(boolean)
| SUPDATE (var-name) {algebraic-expression)
| $PLOTENTRY

| $PRINT (string-expression) > (string-expression)

| $SPECIES OFF (string-expression) {pattern) {boolean)

(string-expression) =€
| string. (string-expression)
| (algebraic-expression) . {(string-expression)

(intervention) 2= %mod: ( € | alarm {(float) ) (boolean-expression) do (effect-list) repeat
(boolean-expression)

An (intervention) is declared using and specifies the temporal granularity with which KaSim
checks the subsequent (boolean-expression) whose satisfaction triggers execution of {effect-list). This
basic scheme repeats as long as the (boolean-expression) following the repeat keyword is satisfied. The
temporal granularity of the checks comes in two flavors: either at specified intervals of (simulated) time or
at each event. A few examples will clarify the broad scope of the intervention grammar.
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2.5.1

>

2.5.2

Timing and conditioning of interventions

// test at a specified time
alarm 2.3 [true] do ; repeat [true]

Here the alarm keyword is followed by a real-valued number specifying the time interval between
checks of the subsequent boolean condition, here [true]. Thus, the directive means that KaSim
should check after 2.3 simulated time units whether [true] is true—which of course it is—and
execute the effect , 1.e. print a line to the output file with the values of all variables
declared for plotting (%¥plot) and all observables (%0bs). This will occur every 2.3 time units as
long as [true] is true, which is forever.

// test at each event

|A()] > 1000 do ; repeat |B(x[_])]| < |B(x[.1)]
When the alarm keyword is omitted the subsequent condition is checked at each event cycle. In our
example, if the number of agents of type A is greater than 1,000 a is executed, and
this directive repeats until the number of Bs bound at site x exceeds those that are unbound. Note
that the action could be triggered intermittently, as long as

[B(x[_1)] < |B(x[.])|,because the number of As might fluctuate around 1,000. However,
once the repeat condition is violated, the directive ceases to be active forever after.

Omitting the repeat keyword (and the associated condition) is equivalent to repeat [falsel].
This defines a “one-shot” intervention, which makes most sense if the timing of checks is specified
by an alarm. Otherwise the condition is checked at the first event, which is of limited utility.

// conditional one—-shot directive

alarm 5 |A() | > 1000 do ;
// unconditional one—-shot directive
alarm 5 do ;

The first code snippet means that a print is generated after the first time interval of length 5, if A is

present in more than 1,000 copies. In essence this directs KaSim to print all observable values at
[T]=5, where [T] is the (reserved-variable-id) holding the current simulated wall-clock time

(Grammar 7). The second code snippet omits the condition following the timing specification. This

is tantamount to setting it to [true]. Thus,at [T]=5a is executed.
Model perturbation
// model perturbation: adding and deleting agents
Svar: ‘n’ |B(x[.]1)]
alarm 10.0 do 'n’ C(x1l{p}[.]); /* add some C */
alarm 15.5 do IB(x[_1)]| B(xI[_1); // delete all bound B

Here we perturb the system at time [T]=10.0 by injecting as many agents of type C as there are
unbound copies of B at that moment. The additional C-agents are specified to be unbound and in
state p at site x1. This perhaps contrived intervention illustrates the use of variables in intervention
directives. The subsequent directive deletes all instances of bound B-agents present at [T]=15.5.

// timing is everything
(—) [T] = 10.0 do 1000 C(); /* no no */
alarm 10.0 do 1000 C(); /* ves yes */

Once more: Without the alarm keyword, the directive’s condition ( [T]=10) is checked at every
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2.5.3

event. It is extremely unlikely that an event occurs at a simulated time [T] that exactly equals a
pre-specified value. Thus, the condition will never be satisfied. If a perturbation is needed at an
exactly specified point in simulated time, use the alarm construction.

// model perturbation: updating variables

%obs: ‘Cpp’ |C(x1l{p},x2{p}) |

Svar: 'k’ 0.001
"Cpp’ > 500 do 'k’ 'k’/100; // change variable
"Cpp’ > 500 do 'rule 1’ inf; // change rate constant

The intervention grammar allows us to update values of variables. In the first one-shot directive, the
first time the number of doubly phosphorylated C agents exceeds 500, the variable ’ k’ (which
could be a rate constant) is decreased hundredfold. The second directive refers to the rate constant of
rule 1’ and sets it to infinity.

// apply a rule at a specified time

alarm 5 do |C(x{p})| C(x{p})—>C(x{u}); repeat [true]
// change the value of a token at a specified time

alarm 15 do 1 | —|money| money;
The effect of is to apply a rule a specified number of times at a specified instant. In the first

case, the rule is applied every 5 time units as many times as there are agents of type C whose site x is
in state p. Note that the rule is applied deterministically, i.e. it has no propensity. If a rule cannot be
applied at runtime, a warning is issued but no fail condition ensues. The second example deploys a
rule that specifies no pattern transformation but exploits the token section to reset a token value after
the first 15 time units have elapsed. This is useful since only variables, not token values, can be set
with the effect.

Model observation

// interrupt
alarm 25 do "dump.ka’; // interrupt run and dump state

The directive interrupts the simulation. If the simulator is running in batch mode, this will
terminate the simulation. If the simulator is running in interactive mode, control returns to the user,
who could issue intervention directives by hand and resume the simulation (section ??). The (Label)
after the is the optional name of an output file. If a name is given, the state of the system (i.e.
the set and count of molecular species present at that time) is written to a file so named.

// one—time snapshots of the system state
[E-]1/([E-]1+[E]) > 0.9 do "my prefix”;

The directive produces a snapshot of the system state (which is what happens after the

directive in the previous example). The snapshot specifies the full state of all agents present
in the system at that point in time. Each line in the snapshot output consists of a molecular species
(i.e. a connected component of the system graph) along with the count of its occurrences and, as a
comment, the size of the species in terms of agents. Output lines are constructed in such a way that
the snapshot file can be used as the initialization component of a KF.

// Snapshot [Event: 2069]

IITOII IIlOll
%init: 743 /*2 agents*/ B(xI[1l]), A(x[1l] c[.1)
%init: 257 /*1 agents*/ B(xI[.])
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%init: 257 /*1 agents*/ A(x[.] c[.])

For example, one could run a model to steady state, then dump a snapshot and use that file as a
representative initial condition for subsequent simulations. This might save time when investigating
the response of a model system to a variety of perturbations that are applied at steady state. In the
example above the snapshot is produced once as soon as the fraction of non-productive events has
exceeded 90%. The name of the snapshot file is “my_prefix n.ka”, where n is the event number at
the time of the snapshot. The “my_prefix” string can be constructed by string concatenation (. )
using local variables. When the prefix is omitted, the snapshot filename defaults to “snap.ka”.

// periodic snapshots of the system state
( [E] [mod] 1000 ) = 0 do
"abc.ka”; "abc.dot”;
repeat [true]

This directive will produce a snapshot every 1,000 productive events. If the filename already exists,
a counter is automatically appended to prevent overwriting. In this case, the result will be a series of
files named “abc_n.ka” with n=1,2,.... The second invocation of uses the filename
extension “dot” to instruct KaSim to output a file in a format that can be processed by graphviz or
similar program, visualizing (however crudely at present) the molecular species populating the
system. The extension “html” is also an option.

As mentioned, prints the current value of observables. In the example below,
(string-expression) > (string-expression) outputs the first string to a file named by the
second string.

// print to file
%S$token: A
|A| < 0 do
("A is: ”".|A|.” at time=".[T]) > ("A_".[E].”.dat”);
repeat [true]

In this case, the first string expression is assembled using variables and string concatenation. A new
filename is assembled using the event number [E] each time the value of token A drops below zero
(and a print event is generated). Omitting the filename and the *>’ character defaults to standard out.

The following toy example illustrates the joint operation of multiple intervention directives. Imagine
the need to gather simulation data over a window of time set by the variable ' interval’ and to
record these data in a file. Moreover, we wish to slide this window by *shift’ time units, each
time starting a new file and closing the file that has been recording for * interval’ time units.
This should continue until the last file opens at time ’ Tend'’. Such a situation arises in section ??
when we record data for the Dynamic Influence Network (DIN) to be visualized as a “movie”. Here
we simply “open” and “close” files verbally by writing a reporting string to standard out.

// sliding data window and output

Svar: ’'Tend’ 100

%var: ’‘shift’ 0.5 // in time units
%var: ’'interval’ 3 // 1in clock beats
%var: 'tick’ 0 // auxiliary
%var: ‘clock’ 0 // auxiliary

[T] > "clock’” && ’'tick’ > ’"interval’ — 1 do
"close file ”.’tick’—'"interval’.” at time ”.[T];
repeat ’‘tick’ < ’'Tend’/’shift’ + ’‘interval’

25



[T] > "clock’ do
"open file ”.’tick’.” at time ”.[T];
repeat ‘tick’ * ‘ghift’ < 'Tend’
[T] > "clock’ do
"clock’” ’"clock’+’'shift’; "tick’ "tick’+1;

repeat ’‘tick’ < ’'Tend’/’shift’ + ’‘interval’
The directive conditions are checked at each event (no alarm keyword). When multiple
directives are present, their conditions are tested and effects executed in the order in which they are

declared in the KF. The repeat condition is evaluated at each event after execution and determines
whether the directive is eligible for consideration at the next event cycle. A sample output follows.

open file 0 at time 0.00143794913206
open file 1 at time 0.501596099326
open file 2 at time 1.00261155525
clogse file 0 at time 1.50649098743
open file 3 at time 1.50649098743
close file 1 at time 2.00398432147

open file 200 at time 100.002636571
cloge file 198 at time 100.51907549
cloge file 199 at time 101.001209551
cloge file 200 at time 101.509098845

Other directives listed in Grammar 13 require more background and their description is deferred to section
??. A directive is a semi-colon separated list of effects, so don’t forget the semi-colon after each effect.

2.5.4 Hello ABC, modified

In many scenarios it makes sense to let some components of a system reach steady state before studying the
effect of introducing other components. For example, a signal molecule might affect a system that has
attained steady-state in its absence. We illustrate this in the ABC model (section 1) by letting the binding
between A and B equilibrate before adding C. This is easily achieved by splicing in the following code
snippet.

42 // Initial condition

43

44 %init: 1000 A(), BY()

45 %init: 0 C(x1{u},x2{u})

46

47 // Intervention

48

49 alarm 25 do 10000 C();

The amount of C is set to zero initially and an intervention directive is added that injects 10,000 copies of
C in its default state, as specified in its signature, at time 25—which allows plenty of time for the complex
formation between A and B to equilibrate (Figure 3). The result is seen in Figure 7.
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Figure 7: Intervening in the ABC model. 10,000 Cs are injected after 25 s simulated time into an equilibrated
mixture of A- and B-agents.

3 Simulation

In this section we cover some elementary aspects of stochastic simulation as they pertain to rules. This
background should help to better understand how Kappa rules work and what happens when a model is
simulated by KaSim. For details, please consult any of the numerous textbooks and reviews that cover
stochastic chemical kinetics and Monte-Carlo in the context of reaction networks.

The simulator KaSim is given an input file (a KF), which contains among other things (section 2) the
specification of a model and an initial condition. The initial condition is a collection of molecular species
represented in Kappa. Recall that a molecular species is a Kappa expression that specifies the full state of
all agents explicitly; it is the degenerate case of a pattern that leaves nothing unspecified. A collection of
molecular species is called a mixture. In the context of a model, the mixture is the state of the system. The
state changes because of events that occur. An event is the reaction induced by the application of a rule to
the mixture. The application of a rule is based on matching the pattern on its left-hand-side to the mixture
and executing the transformation specified by the rule. The choice of which rule to apply where in the
mixture and when is stochastic and follows a scheme known as continuous time Monte-Carlo—CTMC for
short, but often simply referred to as “Gillespie algorithm” (section 3.4). The basic tenet of CTMC is that
the conditional probability of a specific interaction occurring between time T and T + ¢, given that it did
not occur up to T, is independent of T. An event therefore marks time and KaSim simulates the physical
time T of the system by advancing it from event to event. KaSim implements the stochastic chemical
kinetics induced by the rules of a model without requiring the (often unfeasible, if not outright impossible)
explicit enumeration of all implied reactions.

3.1 Matching

We refer to a match also as an embedding of a graph, usually an observable or the left pattern of a rule, into
a host graph, usually a mixture of molecular species—but it could be any site graph. The term embedding
connotes that the host graph must be of equal size or larger than the pattern so that the pattern can “fit” into
the host graph. If we disregard binding types for a moment (see below), an embedding or match is formally
a subgraph isomorphism: Every node mentioned in the pattern must have a corresponding node of the same
type in the host graph; for each node so matched, every site mentioned in its scope must have a
corresponding site in the host node and for each site so matched, its state—whether internal or
binding—must be the same or be less specific than the one of the host site. As far as internal state is
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Figure 8: Embedding a graph into a host graph. Cases I—III illustrate the matching of binding types. In
case IV the central graph is the host graph; its ring polymer is “oriented” by virtue of the x-y bonds. The
pattern to the left has one embedding in the host graph because it requires B 1 to have a bound z-site. Note
that the specification of site y does not care about its internal state and so it is compatible with the u-state
in the host graph. In case IV the pattern on the right has 5 embeddings. In case V the pattern has a twofold
symmetry and therefore two embeddings in the host shown. We discuss symmetry in section 3.2.

concerned, the wildcard (#) is less specific than a state identifier. As far as binding is concerned, the
wildcard (#) is less specific than the underscore (_), which is less specific than a bond (or bond label in the
line-oriented expression). A bond is matched by following the bond of a matched site in the host graph and
extending the matching process from there. Implicit in all this is that any information not provided in the
pattern poses no constraints to the match—don’t care, don’t write: match anything.

Q P Q P r@ P Q r P
A ENO ~ OpE A A HNO » OMINO ~ OJN ~ O~ O A O~ ©
) ) ) )

Figure 9: Embedding of binding types. The pattern at the top embeds in all patterns shown at the bottom.

Binding types (section 2.2) are treated differently in the matching process because they only specify type
constraints and not resource (stoichiometric) constraints. A binding type matches a type of bound agent
and the specified site, even if that agent has already been matched. Thus, the matching of binding types
can be many-to-one (a homomorphism). A binding type is less specific than a labelled bond and more
specific than the underscore (_).

Figure 8 provides some graphical examples, while Figure 9 centers on the matching of binding types.
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3.2 Symmetry

A symmetry of a site graph is an embedding into itself, also called an automorphism. An example is the
pattern in case V of Figure 8. If we permute the agent identifiers {1 — 2, 2 — 1}, we obtain a graph that is
indistinguishable from the original. We say that |A(z [1]) ,A(z[1]) | has two automorphisms: the
identity (which maps the pattern into itself without shuffling identifiers, {1 — 1, 2 — 2}) and the
permutation {1 — 2, 2 — 1}. Every pattern has the identity as a trivial symmetry. For example, the pattern to
the right of case IV has only the trivial symmetry, because one B is bound at site y while the other is bound
at site x. The left hand side of the rule in panel C of Figure 6 has one non-trivial symmetry (thus two in
total), whereas the left pattern of the minimal rule in panel D has lost that symmetry because the U with
identifier 4 must be free at site t, whereas no such condition is imposed on the U with identifier 2.

The mixture, which is the (well-stirred) “soup” of molecules that constitute the state of the system at time ¢,
should be thought of as one big graph in which molecules are connected subgraphs. In fact, KaSim does
not “know” how many instances of a given molecular species are present at any time, unless the

directive is used. If the mixture contains 451 copies of a complex, these will be represented
as 451 isomorphic graphs, i.e. connected subgraphs of the mixture-graph. Rather than counting species
KaSim maintains, and cleverly administers, all embeddings from rules into the mixture graph.

Because the mixture is a graph whose nodes have not only names but also identifiers, it represents a
“microstate”: It contains everything one can possibly know about the system at the level of abstraction set
by Kappa, including the identifiers. A more coarse-grained notion of state is one in which we disregard the
identifiers, paying attention only to which graph components (i.e. molecules) are the same. This yields the
notion of a “macrostate”.

Two site graphs are indistinguishable if they are related by an isomorphism. A symmetry, or
automorphism, is an isomorphism of a graph to itself, which is a permutation of the identifiers that yields a
graph identical to the original even when taking into account the identifiers. An isomorphism establishes
indistinguishability at the macro level (sameness), whereas an automorphism establishes
indistinguishability at the micro level (identity). For example, Figure 14 in section 3.2 shows a microstate
in which we can tell apart all molecules by virtue of their identifiers, whereas disregarding the identifiers
yields a macrostate with three molecules of class I, two of class II and one of class III.

Symmetry awareness is important in Kappa models. For example, we encountered symmetry in section
2.4.1, where we defined the number of embeddings |A (x[1]),A(x[1]) | in the mixture for the
purpose of counting the instances of homodimers A (x [1]) ,A(x[1]). Clearly, we don’t care about the
agent identifiers when counting homodimer objects. However, by virtue of symmetry, the pattern
A(x[1]1),A(x[1]) has two embeddings in any molecular species A (x[1]) ,A(x[1]) contained in
the mixture. We therefore need to compensate for the symmetry by dividing the number of embeddings by
the total number of symmetries, here 2.

Symmetry shows up again in the context of rule activity, section 3.3.

/\ Careful: KaSim only determines embeddings, not symmetries. /¢ is the user s responsibility to be
symmetry aware. While the static analyzer can detect symmetries, this feature is not yet integrated with
KaSim and the UL

3.3 Rule activity

The simulation core loop (section 3.4 below) selects a rule for application to a mixture .4 with a
probability that is proportional to a quantity called the rule activity (or rule propensity). The activity of rule
i: % — R; @y;is given by

a; = L ~ MY Qi (1)
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where {£; ~ #} is the set of embeddings of £; into .4 and | - | returns the size of the set; y; is the rate
constant. The count [{Z£; ~ .#}| takes care of mass-action kinetics by reporting the number of
opportunities for the rule to apply in ..

The factor Q; depends on one’s interpretation of the “physics” underlying a model, as detailed next.

3.3.1 Symmetry and rule activity

Symmetry can affect rule activity (1) in two fundamental ways.

Stance 1 (ND): One stance is to consider only the symmetries of the left pattern £. In this view, the focus

is exclusively on the matching of £. The assertion is that two embeddings of £ that are related by

symmetry constitute the same match; they are equivalent much like a square can be juxtaposed onto

another in a number of indistinguishable ways due its rotational and reflectional symmetry. In this
view, the factor Q; in (1) becomes

where w ¢, is the number of symmetries of Z;, the left pattern of rule i. (Recall that the identity is a

trivial symmetry, so w ¢, = 1.) The factor Q; compensates for counting a// embeddings in
{Zi ~ A} of (1).

Stance 2 (D): The other stance considers the symmetries of the rule, by which we mean the symmetries of

the left pattern £ that are preserved across the rule arrow and still occur in the right pattern .
Here the focus is not on whether two embeddings of £ are indistinguishable (as in stance 1), but
whether the resulting actions of the rule are indistinguishable. Two embeddings of Z related by a

symmetry that is preserved in £ yield the same outcomes in microscopically identical ways. As such

they should not be considered distinct actions. However, if the symmetry is broken in £, the

outcomes are achieved in microscopically distinguishable ways, see Appendix E for details. In other
words: if the embeddings of £ are related by a preserved symmetry, the outcomes are two identical
mixtures (i.e. the same down to the identifiers); otherwise the outcomes are two isomorphic mixtures

(i.e. the same if one disregards identifiers). In this view, the factor Q; in (1) becomes

1

Q; = )
WL —~R;

where w ¢, ., 1s the number of symmetries of the rule, i.e. the number of symmetries of £; that are
preserved in ;.

The two viewpoints have a natural interpretation that is best illustrated by example. Consider the following

rules:

"1p’ A(x[1]{u}), A(x[1]{u}) —> A(x[1l]{p}), A(x[1]{u}) @ k
"2p’ A(x[1]{u}), A(x[1]{u}) —> A(x[1]{p}), A(x[1]{p}) @ k

and the mixture 4 = A (x[1]u) ,A(x[1]u). Bothrules '1p' and '2p' have symmetric left patterns,
but '1p' breaks that symmetry on its right side, whereas '2p' preserves it. The symmetry of the
molecule(s) in the mixture is irrelevant, since a rule “perceives” molecules only through the mask placed
on them by its left pattern. Upon adopting stance 1, rules '1p' and '2p' have the same activity (k/2) in
. Upon adopting stance 2, rule ' 1p' has twice the activity of '2p' and twice the activity than under
stance 1. The interpretation in chemical language is that the pattern A (x [1]u) , A (x[1]u) has two
“reaction centers” with respect to the action specified in rule ' 1p': each A-agent can be a target of
phosphorylation. In contrast, the same pattern has only one reaction center with respect to the action
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specified in '2p"'. If this seems a natural viewpoint, on what grounds is stance 1 defensible? Why should
the activity of ' 1p' ever be the same as that of '2p'? The answer is to view rule '1p' as
non-deterministic (hence the label ND): when its left pattern matches .4, the phosphorylation action of
"1p' executes at random on one of the two A-agents related by symmetry. In contrast, stance 2 adopts the
view that, given an embedding, the execution of a rule is deterministic (which agent gets phosphorylated is
determined by the chosen embedding, not afterwards). Stance 2 corresponds to the notion of a classical
mechanism—a locally deterministic process (hence the label D). In stance 2, all randomness occurs in the
dynamics: which agents interact when through what rule.

Stance 1 is also known as the stochastic simulation algorithm (SSA) convention. Its persistent use perhaps
traces back to a notion of agent-based models that are a stochastic version of highly abstract reaction
expressions, such as X + X —Z (see footnote 1). In this reaction, X and Z are just proper names that do not
formally expose the internal structure of the molecules to which they refer. Such molecules cannot have a
symmetry: there is no way of deducing from this reaction whether Z is a symmetric combination of Xs or
not. As a result, the only symmetry to deal with is at the level of “reaction configurations” on the left; in
this case, one should only distinguish unordered pairs and hence divide by 2. Given that Kappa deals with
structured entities that can have symmetry, the most natural way of giving meaning to stance 1 within
Kappa is in terms of a non-deterministic rule action, as indicated above.

Finally, there is a third possibility:

Stance 3 (Null): Symmetry is ignored and every embedding triggers an action. In this case,
Q;=1. 4)

It is unclear what physical interpretation should be given to this viewpoint.

At present, KaSim defaults to “Null”. For a model to have a physical interpretation, the user must decide
on how to view symmetry and correct rate constants accordingly by hand. (Future releases of KaSim will
have a more integrated symmetry support.) In any case, nothing in Kappa hinges formally on how
symmetries are viewed. Different interpretations can be chosen simply by correcting rate constants with
combinatorial factors.

3.4 The core loop

The principles of continuous-time Monte-Carlo are well-known and can be found in any number of
textbooks. They were laid out for chemical reaction networks by Gillespie in the mid 70s. A brief refresher
is given in appendix D.

A Kappa simulation is largely initialized by the information provided in the KF, which includes a set of
rules with rate constants, numbers of agents present initially as well as the specification of their state,
observables, and possibly a schedule of intervention directives.

Let T denote the simulated wall-clock time, which is initialized to some value, typically T = 0; let the
a;(T),i=1,...,r be the rule activities as discussed in section 3.3 and let A(T) = Z; a;(T) denote the system
activity. Note that the a; are dependent on T because they reflect the available embeddings into the
mixture .4 (T), which is evolving with T. The simulation core loop then consists of three conceptual steps:

Time to the next event
Determine the time interval ¢ until the next event occurs according to

P [next event occurs at t] = A(T) exp(—A(T)t) 5

Type of next event
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Choose which rule induces the next event according to

a;(T)

P [rule i fires | next event occurs at ] = .
A(T)

(6)
Note that expression (6) is independent of ¢. A particular embedding (section 3.1) of the left pattern
of rule i—i.e. a “location” in the mixture graph at which i acts—is chosen uniformly from all

HZ; ~ 4 (T)}| Q; embeddings of i deemed to be distinct potential events. Rule i is then applied to
the mixture graph using the selected embedding (Figure 10).

Update
Update the wall-clock time by setting T — T + ¢ and update the embeddings for every rule j affected
by the altered mixture .4 (T). Repeat.

— B3

A Q)

O, A Omm©O A
L ) )
B ()
B

Figure 10: Rule application.

By avoiding unnecessary computations in the core loop, KaSim implements this basic specification with a
computational cost per event bounded by a constant that is independent of the size of the mixture. In
general, the update phase of the core loop is time consuming since many embeddings can appear or
disappear as a consequence of an event. The cost of an update is proportional to the number of rules (and
Kappa observables) in the model. The number of rules can be large, as in some applications rules might be
generated programmatically. KaSim’s update scheme relies on the computation of the so called “extension
basis” of the model: a data structure that is built prior to the simulation and guides the search for matchings
of a graph pattern by stepwise extension of an initial anchor. The data structure permits the factorization of
extension steps whenever two patterns share a sub-pattern. In this way, the computational cost of matching
is maximally shared among all patterns that must be checked in the update phase.

3.5 The rate constant

When using Kappa in a fashion that is informed by basic chemical kinetics, it is useful to be aware of a few
basics concerning rate constants.

A rate constant k is the expression of a single mechanism underlying a given type of reaction. It is the
probability rate that an event due to that mechanism occurs between time ¢ and ¢ + dt between specific
reactants, conditioned by the knowledge that no such event occurred up to #. Such a conditional probability
rate is also known as an event “risk”. The rate constant is the risk that a specific event occurs in the next
dt. In a continuum setting, the risk that some reaction event of a given type, such as A + B — products,
occurs is simply k[A][B] with [-] denoting a concentration®. This is known as the reaction velocity or flux.

4To be conceptually consistent in a continuum picture, a concentration [A] should not be thought of as “particles per volume”,
as there are no particles, only a “smear of A-stuff per volume”. Note also in passing that since particles do not exist in a continuum
picture, there is no symmetry that A-stuff could possess. In reference to section 3.3.1, a homodimerization in Kappa, where entities
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In a discrete setting, exemplified by the rule 'dim' A(x[.]),B(x[.])->A(x[1]),B(x[1]) @ Y/,
the risk that a particular A interacts with a particular B depends on the likelihood that they bump into each
other, i.e. that the B happens to be in the fraction oV (o < 1) of system volume V swept out by that A
during a time interval d¢. In a simplistic picture, this fraction depends on the size of A, the size of B, and
their relative velocity. The question then is: what is the activity @ of 'dim' that corresponds to the
continuum version of the reaction in which A and B have concentrations [A] and [B], respectively? In the
discrete picture, [A] = n 4/ V (ditto for [B]), where n 4 and n g are the particle numbers (or embeddings) of
A and B and we obtain a =y'aV (na/V)(ng/V) =yI/V nang. Thus, y/V corresponds to the k in the
continuum picture. Quite generally, the stochastic rate constant y associated with a rule must be a
volume-scaled version of the rate constant k in the corresponding continuum setting:

_k
T yn-l

_k
(dv)nfl

Y [s'mol™™] or y= [s~! molecules” ], (7)
where n is the molecularity of the interaction, k the deterministic rate constant, V the systems volume, and

o ~6.022-10% is Avogadro’s number.

Note that the dependency on volume does not imply that the system is spatially inhomogeneous. Kappa
models are homogeneous (“well-stirred” containers), but in a stochastic setting there is a notion of system
size.

In summary, a bimolecular stochastic rate constant scales inversely with the system volume (size); a
unimolecular rate constant is independent of it (indeed, the interaction does not require a collision between
two objects); and a zeroth order flow rate is proportional to the volume (as every volume element is a
source).

3.6 Rescaling a Stochastic System

To speed up a simulation it is sometimes useful to rescale a model. For the rescaling to be meaningful, it
should keep the average (i.e. deterministic or continuum) behavior of the model the same. This means that
any deterministic rate constant k should stay invariant across the rescaling.

Let agent types be indexed by i, rules by r, and rescaled variables be marked with a prime. A rescaling
with scale parameter o then means

1. The system volume and all molecule numbers are multiplied by ¢ (and the latter presumably rounded
to some integer):

Vi=oV (8)
n;=on; for all agent types i )

2. All stochastic rate constants of rules whose molecularity is 7 are divided by o”*~! (refer to equation
7):

1
Y. = —Yr for all rules r of molecularity n (10)
o

Obviously, if o <1 (> 1), the rescaled system is smaller (larger) than the original.

and reactions can have symmetry asin A (x[.]) ,A(x[.])<->A(x[1]),A(x[1]) @ y1,7-1, would proceed with activity
Y1nana-1/2~v nfq/ 2, whereas in the continuum case the forward flux or reaction velocity (which is the analog of the activity)
is k1 [A]2, where k; is the volume-scaled rate constant corresponding to 1, as detailed later in this section. This is a true discrepancy,
intrinsic to the continuum description. There is no point in trying to sweep the factor 1/2 into the k1, as that would require that we
also rescale by 1/2 the rate constant k_; of the reverse reaction (or else we would not be considering the “corresponding” continuum
reaction with the same equilibrium). However, there is no reason for altering k_j.
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/\ Careful: While the average behavior of the system is not changed by rescaling, the fluctuations are.
For 0 < 1 one is considering a smaller volume with fewer particles (at constant concentration), but fewer
particles lead to larger fluctuations.

3.7 Ambiguous molecularity

The graph-rewrite part of a Kappa rule represents a mechanism. As such it does not specify whether two
disconnected components of the left pattern £ should or should not be embedded in the same molecular
species (i.e. connected component) of the mixture, Figure 11.

E -3 B3

Figure 11: Ambiguous molecularity. The two A agents in the left pattern of the dimerization rule can embed
in the shown mixture either within the same molecule (the trimer) or in different molecules (the trimer and
the monomer). The former leads to a unimolecular (u) kinetics, the latter to a bimolecular (b) kinetics. As
an aside in reference to symmetry corrections (section ??): Because of the non-trivial symmetry of the left
pattern, there are two embeddings for the unimolecular case. However, because that symmetry is preserved
by the rule, a correction factor of 1/2 should be applied, as the two embeddings refer to the same physical
event. In the bimolecular case there are four embeddings: two locations (section ??) and two embeddings
per location due to symmetry. Again, because the rule preserves the symmetry, a correction factor of 1/2
should be applied at each location, yielding one potential physical event per location. Since there are two
locations, intermolecular bindings occur with twice the frequency of unimolecular bindings in this example.

The view adopted by Kappa is that, all else being equal, uni- and bimolecular binding interactions proceed
by the same mechanism. This view is also suggested by chemistry, where, for example, the electronic
displacements that result in an esterification do not depend on whether the carboxyl and alcohol groups are
within the same molecule or belong to distinct molecules, assuming no other constraints are in place.
Obviously, if constraints, such as geometry, prevent an intramolecular reaction (for example, the reactants
groups may face in opposite directions), these constraints must become part of the mechanism and would
have to be specified as context in the graph-rewrite rule.

Thus, if the mechanism is the same, the only distinction between intra- and intermolecular interactions is
the effective reaction volume. In the intermolecular case, the effective reaction volume is the system
volume, as reactants have to meet within the boundaries of the system. In the intramolecular case, however,
the effective reaction volume is constrained by the dimensions of the molecule and therefore independent
of the system volume. As a consequence, the distinction between uni- and bimolecular interactions is
kinetic and is captured by the distinction between uni- and bimolecular rate constants—the former being
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independent of system volume, while the latter depend on it inversely, see section 3.5.

A Kappa rule whose molecularity is ambiguous must be equipped with two rate constants,
A(x[.1),a(y[.]) =Aa(x[.1),A(y[.]) @y2(y1), as indicated in Grammar 3 for the production
of (ambi-ruley. The simulator KaSim ensures that the bimolecular version of the mechanism is realized
with the proper stochastic rate constant y, and the unimolecular version with ;.

This raises the question: How does one determine whether the molecularity of a rule is potentially
ambiguous? While the static analyzer KaSa can determine molecular ambiguity, this capability is
presently not integrated in the User Interface. It is up to the modeler to ensure that the kinetic aspect of
molecularity is properly specified. In case of doubt (because it might be impossible for a human to consider
all reachable molecular species to which the rules of a model might apply), candidate rules should be
refined by adding more context to eliminate ambiguity.

Molecular ambiguity can be very costly. KaSim assigns identifiers to molecular species in the mixture and
tracks for every agent the identifier of the species it is a part of; it also tracks all embeddings of the left rule
pattern within molecular species, as well as across species. The present implementation results in an
overestimation of the bimolecular rule activity, which is corrected by rejecting attempted bimolecular
events that turn out to be unimolecular (but advancing the wall-clock time). Costs like these are
unavoidable, but some clever computer science could improve efficiency.

/\ Careful: If only one rate constant is supplied, KaSim will not complain and execute both intra- and
intermolecular rule applications with the same rate constant.

Other rule-based languages offer syntactical constructs to exclude or enforce a particular molecularity of a
rule. To maintain the “purity” of the mechanism, Kappa does not provide such constructs. Rather, a user
can enforce exclusively uni- or bimolecular applications of a rule by setting the corresponding rate constant
to zero.

/\ Careful: The treatment of molecular ambiguity is limited to patterns with two disconnected graphical
components (rules with arity 2); it does not extend to rules with higher arity and thus combinatorial
ambiguity. Do not use the two-rate-constants construct for such rules.

3.8 Rate functions

It is rarely possible to model consistently at a single level of mechanistic description. Sometimes, processes
need to be collapsed into a single “overall” process, if not for conceptual then for practical reasons. This
aggregation is often done by accounting for the kinetic consequences of not explicitly exposed mechanisms
through rate functions that are not mass-action monomials and that may even depend on entities not
mentioned in the rule. Kappa permits such rate functions, but the user must understand that the price to pay
is a decreased transparency of the model and a curtailment of the causal analysis that is perhaps the most
compelling opportunity enabled by rule-based modeling.

As an example consider the standard Michaelis-Menten scheme and its quasi steady-state approximation.

1 %agent: E(s[e.S])

2 %agent: S(el[s.E]l, x{u p})
3

4 %agent: _E(s)

5 %agent: _S(e, x{u p})

6

7 %Svar: 'kl’ 0.001

8 %var: 'k 1" 0.1

9 %var: k2’ 1

10
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11 Svar: ‘Km’ ('k_1'+'k2")/'k1’
12

13 E(sl[.]), s(el.],x{u}) <—> E(s[1]), S(ell],x{u}) e 'kl’, "k 1’
14 E(sl[1l]), s(el[l],x{u}) —> E(sl[.]), s(el.]l,x{p}) @ 'k2’

15

16 _E(s[.]1), _S(el[.],x{u}) —> _E(sl[.]),

o S(el.],x{p})
17 @ 'k2'/("Km'+|_S(el.],x{ul)|)

18

19 %init: 100 E(s[.])

20 %init: 100000 S(el.], x{u})
21

22 %init: 100 _E(s[.])

23 %init: 100000 _S(el.]l, x{u})
24

25 %obs: ‘P’ |s(el.],x{p})]|

26 %obs: 'ES’ |E(s[1]), S(el[l],x{u}l) |
27 %obs: 'S’  |S(el.], x{u})|
28

29 %obs: ‘_P’ |_S(el.]l,x{p})|

In the code snippet, lines 13 and 14 are the standard Michaelis-Menten scheme in which an enzyme E
reversibly binds unphosphorylated substrate S (x {u}) and converts it to released product S (x {p}). The
quasi steady-state assumption is a way of eliminating the explicit binding interaction by positing that the
the enzyme-substrate complex E (s [1]),S(e[1],x{u}) is maintained at steady-state even though our
system is closed and everything ends up in product because of the irreversible enzymatic reaction. The
model for the quasi steady-state case then simplifies to the single rule of line 16 (where the enzyme and
substrate names are prefixed by an underscore, so we can run both models simultaneously). Note that the
_E(s[.]) isinvariant context that cannot be eliminated from the left and the right pattern of the rule,
since it plays a role in determining the number of embeddings of the left pattern (and thus the activity of the
rule).

From elementary course work we know that that the rate of product formation in the quasi steady-state
approximation is given (in the deterministic setting) by

k2 E[S]

Gl (11)

where [S] is the concentration of free substrate, E; the total concentration of enzyme, and k, the catalytic
rate constant. We therefore replace the rate constant of the rule on line 16 with a rate function (on the
continuation line 17). Note that the factor E;[S] in (11) has been omitted because that is precisely the
number of embeddings that KaSim determines for the rule. In situations in which the rate function does
not contain the number of embeddings of the left pattern £ as a factor, simply divide by the number of
embeddings |.£| to compensate.

The quasi steady-state approximation works well when substrate is in large excess of enzyme. In lines 19
and 20 (as well as 22 and 23) we define an initial amount of substrate that saturates the enzyme, in which
case product formation becomes linear. The enzyme is saturated when substrate is in excess of the
(stochastic) Michaelis constant, which in this example is xp; = (k—1 + k»)/ k1 = (0.1+1)/0.001 = 1100
molecules. In our code snippet, we initialize substrate at an amount 10fold above the saturation regime, so
as to extend the time that the enzyme-substrate complex is at steady-state. Figure 12A shows the result.
The orange curve is the amount of enzyme-substrate complex (right ordinate). It changes little on average
until free substrate (green) is depleted and the enzyme falls out of saturation. As expected, the agreement
between the aggregate model with rate function and the mechanistic model is near perfect (of course, both
must coincide when all substrate is depleted). In Figure 12B we run the comparison for the opposite case in
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Figure 12: Rate functions. Two Michaelis-Menten rule sets are compared under different conditions. The
rule set that produces P is mechanistically more detailed than the one producing _P. The latter mechanism
compensates for the lack of detail with the usual hyperbolic Michealis-Menten rate function, which rests on
the assumption of a quasi steady-state in the abundance of the enzyme-substrate complex. A: Substrate S isin
vast excess over enzyme E, resulting in a quasi steady-state of the enzyme-substrate complex (orange curve).
Because the modeled mechanisms is irreversible, this quasi-equilibrium eventually breaks down. Under
these conditions, the production of P (blue curve) by the more detailed mechanism is practically identical
to the production of _P (red curve) by the less detailed mechanism. (They are linear during quasi steady-
state, because S is here also in excess of the Michaelis constant K;,;.) B: In this scenario, the catalytic rate
constant * k2 is slower than in panel A and enzyme is in excess of substrate. As a result, most substrates are
immediately bound by an enzyme and then slowly converted to product without the possibility of establishing
a quasi steady-state. The more detailed model (red curve) is much more sensible, whereas the aggregate
model (blue curve) is completely wrong.

which enzyme is in excess of substrate. As expected, the dynamics differs dramatically between the two
models.
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Appendices

A Syntax of Kappa

A.1 Names and labels

(Name)

(Label)

= lazA-Z][a-zA-Z0-9 ~— + ]x // cannot start with a digit
| [ 1[azA-Z09 ~—-+ ]+ // initial underscore can’t stand alone
=" \n ]+ //mo newline or single quote in a label

A.2 Pattern expressions

(pattern)
{agent-name)
(site-name)
{state-name)
{agent)

(site)

(interface)

(more-pattern)

(more-interface)

(internal-state)

{link-state)

(number)

A.3 Rule expressions

A.3.1 Chemical notation

(f-rule)
({fr-rule)
{ambi-rule)
(ambi-fr-rule)

(rule-expression)

1= (agent) {more-pattern)

2= (Name)

1= (Name)

1= (Name)

= (agent-name) ( (interface) )

1= (site-name) {internal-state) {link-state)

| (site-name) (link-state) (internal-state)

| {counter) // see Grammar 14

= (site) (more-interface)

(site-name) . {agent-name) |

| €
=[] (pattern)
| €
= [,] (site) {more-interface)
| €
= { (state-name) }
| {#) // wildcard
| €
= [ (number) |
[.]
[_]
[#] // wildcard
[
€

= neNp

2= [ (Label) | (rule-expression) [ | {token) | (@ (rate)
(Label) | (rev-rule-expression) [ | {token) | (@ (rate) , (rate)
(Label) ] (rule-expression) [ | {token) | @ (rate) { {rate) }

(Labely | (rev-rule-expression) [ | {token) | @ (rate) { (rate) } , (rate)

— — —

== ((agent) |.) (more) ( {agent)|.)
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(more)

(rev-rule-expression)

{rev-more)

(rate)

A.3.2 Edit notation

(f-rule)
{ambi-rule)

(f-rule-expression)
(more-agent-mod)
(agent-mod)

(site-mod)

(interface-mod)
{(more-mod)

(internal-state-mod)

(link-state-mod)

(counter-state-mod)

{rate)

A.3.3 Counters

(counter)
{counter-name)
{counter-expression)
{(counter-var)
{counter-mod)
(integer)

(variable-name)

, ((agent) | . ) (more) ((agent)|.) ,

->
((agent) | . ) (rev-more) ( {agent)|.)

, ({agent) | . ) (rev-more) ( {agent) |.) ,
<>

(algebraic-expression)

[ (Label) | {f-rule-expression) [ | (token) | @ (rate)
[ (Label) | {f-rule-expression) [ | (token) | @ (rate) { (rate) }

(agent-mod) {(more-agent-mod)

€

, {agent-mod) (more-agent-mod)

€

(agent-name) ( (interface-mod) )
(agent-name) ( (interface) ) (+ | —)

(site-name) {internal-state-mod) {link-state-mod)
(site-name) {link-state-mod) {internal-state-mod)

{counter-name) {counter-state-mod)
(site-mod) {more-mod)

€

, (site-mod) {more-mod)

€

{ ( (state-name) | # ) / (state-name) }
{ ((state-name)) }

€

[ ((number) | .| | (site-name).{agent-name) | # )/ ({number) |.) |

{link-state)
€

{ {counter-expression) | {counter-mod) }
{ (counter-expression) }
{ {counter-mod) }

(algebraic-expression)

(counter-name) { ({counter-expression) | {counter-var) | {counter-mod)) }

(Name)

(=|>=) (integer)
= (variable-name)
(— | +) = (integer)
ieZ

(Name)
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B Syntax of declarations

B.1 Variables, algebraic expressions, and observables

(variable-declaration) = Y%var: (declared-variable-name) {(algebraic-expression)
(declared-variable-name) ::= {(Label) // not (Name)
(algebraic-expression) == (float)

(reserved-variable-name) =

(binary-op) =

(unary-op) =

(defined-constant) =
{float) -

B.2 Boolean expressions

(boolean-expression) =

(boolean) =

(defined-constant)

{declared-variable-name) // variable must be declared using %var
(reserved-variable-name)

(algebraic-expression) (binary-op) (algebraic-expression)

(unary-op) ( {algebraic-expression) )

[max] ( {algebraic-expression) ) ( {algebraic-expression) )

[min] ( {algebraic-expression) ) ( {(algebraic-expression) )
(boolean-expression) |?| {algebraic-expression) [:] {algebraic-expression)

[E] // productive events since simulation start
[E-] // number of null events
[T] // simulated physical time
[Tsim] // cpu time since simulation start
| {(declared-token-name) | // concentration of token
| {pattern-expression) | // occurrences of pattern
inf // denotes oo
+
*
/
AN

— o ——

(72w @ T 7 B ¢)

@gog'xo_a

222250 g
I_‘I_l

— —

=3
A=

&=
m
S

(algebraic-expression) (= | <|>) (algebraic-expression)
(boolean-expression) || (boolean-expression)
(boolean-expressiony && (boolean-expression)

[not] (boolean-expression)

(boolean)

[true]

[false]
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B.3 Observable declarations

(plot-declaration) =
(observable-declaration) ::=
B.4 Agent signature

(signature-declaration) =
{agent-name) =
(site-name) =
(state-name) =
(signature-expression) =

(signature-interface) =

(more-signature) =

(set-of-internal-states) =

(set-of-state-names) =

(set-of-link-states) =

(set-of-stubs) =

B.5 Initial condition

(init-declaration) =

B.6 Parameter settings

(parameter-setting) =
(parameter-name) =

(parameter-value) =

B.7 Token expressions

(token) =

(another-token) =

(declared-token) =

{declared-token-name) =

Y%plot: (declared-variable-name)

%obs: {(Label) {algebraic-expression)

%agent: (signature-expression)
(Name)

(Name)

(Name)

{agent-name) ( {signature-interface) )

(site-name) (set-of-internal-states) (set-of-link-states) (more-signature)
(site-name) (set-of-link-states) (set-of-internal-states) {more-signature)
(site-name) { = (integer) | += (integer) }

[,] (signature-interface)
€

{ (set-of-state-names) }
€

(state-name) _, (set-of-state-names)
€

[ (set-of-stubs) |
£

(site-name) . {(agent-name) ,_, {set-of-stubs)
€

%init: (algebraic-expression) (pattern)
%init: (algebraic-expression) {(declared-token-name)

%det: (parameter-name) (parameter-value)
reserved names listed in table ??
defined range associated with each (parameter-name), table ??.

(algebraic-expression) {declared-token-name) {another-token)

, (token)
€

%token: (declared-token-name)
(Name)
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B.8 Intervention directives

(effect-list) 2= leffect) ; (effect-list) | €

(effect) == $SADD (algebraic-expression) {pattern)
| S$SDEL (algebraic-expression) {pattern)
| SAPPLY (algebraic-expression) {(rule-expression) [ | {token) ]
| $SNAPSHOT (string-expression)
| $STOP (string-expression)
| $DIN {string-expression) {boolean)
| $TRACK (labely (boolean)
| SUPDATE (var-name) {algebraic-expression)
| $SPLOTENTRY

| $PRINT (string-expression) > {(string-expression)

| SSPECIES OFF (string-expression) {pattern) (boolean)

(string-expression) =€
| string . (string-expression)
| (algebraic-expression) . {(string-expression)

(intervention) 2= %mod: ( €| alarm {float) ) (boolean-expression) do {effect-list) repeat
(boolean-expression)
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C Counters

Counters are a special kind of site that can be used to store bounded non-negative integers and perform
some simple tests on them, see Grammar 14. Importantly, the rate constant of a rule can refer to the
counters that appear in it.

Grammar 14: Counters

{counter) = (counter-name) { ({counter-expression) | {counter-var) | {counter-mody) }
{counter-name) .= (Name)

(counter-expression) = (=|>=) (integer)

{counter-var) ©i= = (variable-name)

(counter-mod) 2= (= | +) = (integer) // only on the right of a rule
(integer) = 1€Z

(variable-name) 1= (Name)

Counters must be declared in the agent signature (section 2.4.2). Using counters thus forces a signature
declaration, which is otherwise optional. Counters must be initialized (section 2.4.3):

// agent signature with a counter site ¢ ranging from 2 to 6
%agent: A(x,y,c{=2 / += 6})

// initialization of 100 instances of agents of type A
%init: 100 A(x,vy,c{=4})

The following examples illustrate the use of counters. (That makes them counter examples.)

» // test for equality
A(x[.],c{=5}),A(y[.1) —> A(x[1]),A(y[1l]) @ 0.001

Here the dimerization can only happen if the A to be bound at site x has a value of 5 in counter c.
Note that the counter is only tested and can be omitted from the right hand side of the rule.

» // test for inequality
A(x[.],c{>=5}),A(y[.]) —> A(x[1]),A(y[1l]) @ 0.001

Here the dimerization happens if the A to be bound at site x has a value of at least 5 in counter c.

» // test for inequality and modify counter
A(x[.],c{>=5}),A(y[.]) —> A(x[1],c{+= 2}),A(y[1l]) @ 0.001

As above, but upon dimerization the counter value in c is incremented by 2.

» // edit notation for counter test and modification
A(x[./1],c{=4 / += —-1}),A(y[./1]) @ 0.001

In this edit notation of a rule, the dimerization happens if the agent binding at x has a counter value
of 4. Upon dimerization the counter is decremented by 1.

» // rule with counter—-dependent rates
A(x[.],c{=var}),Aa(y[.]1) —> A(x[1l]),A(y[1l]) @ "var’ * 0.001

Rate constants can depend on counter values. The construct c=var declares a variable that can be
used in the rate expression of the rule. Here, for example, the dimerization rate constant is the
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counter value divided by 1,000. (Rates can be algebraic expressions, see section 2.4.1.)

Keep in mind that, in KaSim, counters are just syntactic sugar. Under the hood, each counter contributes a
factor linear in the size of its range to the overall number of rules. Importantly, the simulator does not
check whether a counter stays in its declared range. If it does not, the simulator aborts with an error. (The
static analyzer can give certain assurances, see section ??.) The syntax of counters is ugly at present and
this might change.

D Continuous-time Monte-Carlo

Imagine a single agent A (s [.]) and a single agent B (s [.]) whose interaction produces a dimer:

"bind’” A(s[.]),B(s[.]) —> A(s[1l]),B(s[1l]) @ "y’

The basic assumption in modeling stochastic chemical kinetics is that the past does not influence the
present. This means that the conditional probability that A(s[.]) and B(s[.]) form a bond during the
time interval between t and ¢ + d ¢, given that no bond was present at t, is independent of ¢: ydt (where y
is a probability per time unit—a probability rate).

Suppose that at t = 0 no bond has formed yet. The (unconditional) probability that A and B bind between ¢
and t+dt is given by p(£)dt as

p(t) =yexp(—vyi). (12)

p(t) is called the exponential probability density and is the only possible form given the assumption that
the past does not influence the future. (We shall abuse language and refer to a continuous probability
density simply as a probability.) From (12) we infer that the cumulative probability for the bond occurring
between 0 and ¢ is 1 —exp(—v1).

Suppose that the system now contains n4 and np agents of type A and B, respectively, all with identifiers.
To simulate reaction events we need to know the probability that a particular choice of agents reacts at time
t. It is operationally useful to split this into a probability that the next event occurs at ¢ and a probability,
conditioned on such occurrence, that the event is between specific agents. This way we can determine the
time of an event by drawing a random number from one distribution and the specific reaction combination
by drawing from a second distribution.

In our example, there are n4np potential reaction events, each occurring with probability p(¢) at time t.
One of them must be the first to occur at time ¢. This happens with probability p(#) only if none of the
other nynp — 1 reactions occurred before, which is the case with probability

exp(—y1)"4"8)~1 = exp(~nanpyt) exp(yt). Thus, the probability that a specific choice of A and B agents
is the first pair to bind at time ¢ is p(f) exp(—nanpyt) exp(yt), that is:

P [a specific reaction occurs next at time t] = yexp(—nangyt). (13)
It is more practical to split this into two probabilities:

P [a specific reaction occurs next at time ¢] =

= P [specific reaction | next reaction occurs at ¢] P [next reaction occurs at ¢]. (14)

There are ngnp choices for a specific reaction, which here have the same probability (13). Thus,

P [next reaction occurs at ] = nanpyexp(—nangyt). (15)
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The term nanpy is called the activity of rule 'bind'. The activity is the number of matchings that the
pattern A(s[.]),B(s[.]) hasin the mixture. The A in the pattern can match any of the n,4 instances
of type A and the B can match any of the np instances of type B; together they can match in nyng ways.

The conditional probability that a specific pair of agents is chosen for reaction, given that some reaction
occurs at ¢, is calculated by dividing (13) by (15):

. . . 1
P [specific reaction | next reaction occurs at ] = LA (16)

- »
nanpy nang

which, as expected in this case, is the uniform distribution.

To simulate one binding event, given the mixture, one proceeds in two steps: (1) Determine the time ¢ at
which a reaction occurs by drawing a random number distributed according to (15). (2) Determine which
pair of agents reacts by drawing a random number according to (16).

To simulate the subsequent event, a third step is added: (3) update the system state. This means taking into
account that one A and one B were consumed, n4 — n4 —1 and ng — np — 1, and moving forward the
simulated wall-clock time T, T — T + t, as the event that just occurred marked the advancement of time.

The above arguments generalize verbatim one level up to the case in which we deal not only with one
single type of rule that can apply to several agent instances, but a collection of different rules. With r rules
whose activities at a given moment are a;,i =1,...,r, the total system activity is A = }.!_, a; and we obtain
in complete analogy to (15) and (16):

P [next event occurs at ] = Lexp(—At) (17)

a
P [rule i fires | next event occurs at ] = Tt (18)

E The symmetries of a rule

The activity of a rule is defined in terms of the set of embeddings of its left pattern into a mixture, equation
(1). The idea being that an embedding constitutes a candidate physical event. Here we argue that if the
action of a rule along two symmetrically related embeddings produces identical mixtures at the level of
identifiers (microstate), the two embeddings should be viewed as expressing the same physical event, not
distinct events. This degeneracy is due to symmetries on the left side of a rule that are preserved by the rule
action.

As an example consider Figure 13. On the left panel of Figure 13 A, the agents of the pattern £ of the rule
are given identifiers 1 and 2. These agents are put in correspondence with those in £ by virtue of the agent
mapping—slot #1L corresponds to slot #1R, etc.—which is a constitutive element of a rule (section
2.3.1). One match from £ to the molecule .« below (standing for a mixture) maps A; of £ to Ag of A
and A of £ to Ag of 4 (solid arrows). The transformation of the molecule-fragment matched by £ then
proceeds according to £ with the embedding inherited from £ via the agent mapping (dotted arrows).
This yields mixture 4.

The symmetry of £ enables a second embedding, shown in the right panel of Figure 13A. Here the agent
with identifier 1 has been swapped with the agent with identifier 2. The agent mapping from £ to £
forced the same swap in pattern Z. Proceeding as before, yields mixture .#».

The two actions resulting from the automorphisms of £ yield not only the same (i.e. macroscopically
indistinguishable) mixtures .4 and .4, but microscopically identical ones. Note that the rule is applied to
a molecule with no symmetry (one site is phosphorylated, the other not), but the mechanism represented by
the rule is blind to this difference.
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Figure 13: Rules and symmetries. The Figure illustrates the consequences on a mixture of applying a rule
that preserves the symmetries of its left pattern (A) and and applying a rule that does not (B). The asymmetry
of the right pattern in panel B is emphasized by a red circle. See text for details.

The rule considered in Figure 13B has a symmetric left pattern £’ but an asymmetric right pattern %', in
which the dissociation is accompanied by a simultaneous phosphorylation of the second A. This rule is
applied to a symmetric molecule 4. As before, there are two embeddings of the left pattern. Swapping the
agents on the left, which leaves %’ unchanged, forces again a corresponding swap of the agents on the
right. Unlike in Figure 13A (right panel), this swap is not an automorphism of #’. As a consequence, the
actions resulting from the two symmetric embeddings of £’ differ: In ./, the agent Ag is phosphorylated,
but in ./ it is Ag. The two resulting mixtures .4/ and .4 are isomorphic (i.e. they are the same
macroscopically), but they are not identical (they differ microscopically): Unlike in the case of Figure 13A,
they are distinct realizations of the same macrostate.

The difference between the rule of Figure 13A and the rule of Figure 13B is that the symmetry of the left
pattern is preserved by the rule in the former case, whereas it is not preserved in the latter case. This
example suggests identifying the two rule applications of £ in Figure 13A as being one and the same
physical event, as there is no way of distinguishing them given our defintion of state. The upshot is that in
computing the activity of a rule, we should divide the number of embeddings by the number of symmetries
on the left that are preserved by the rule. (This includes the always preserved trivial symmetry or identity.)

In general, the number of symmetries wg of a pattern &2 is calculated as follows. Let C(2?) be the number
of distinct classes of connected components in &2 ("component classes”), ng, ¢ =1,..., C(£?) the number of
isomorphic instances of component ¢, and w. the number of automorphisms of component ¢ (Figure 14).
Then

C(») C(»?)
W = H I’lc! 1_[ (wc)”‘. (19)
c=1 i=1

An instance of a component class (i.e. a component) has a set of identifiers associated with it. Each factor
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11 10 12

Figure 14: Automorphisms. The pattern shown consists of 3 component classes, I, 11, and III. Component
class I has 3 instances. Instances from class | have 1 automorphism (the identity). Component class II has
2 instances, each with 2 automorphisms, and class III has 1 instance with 1 automorphism. In class II, as
in any other class, we can swap the set of identifiers of each instance for those of another instance of the
same class yielding the identical pattern. In addition we can apply automorphisms within each instance and
combine them freely with any other automorphisms in other classes to again produce an identical pattern. In
total, the patter shown has 3!2!1!13 22 1! = 48 symmetries.

in the first product results from the ways of reassigning the sets of identifiers (as a whole) to different
components within a component class. Such a reassignment produces an identical & (Figure 14), so itis a
symmetry. We can freely combine these within-class permutations of identifier sets across classes to obtain
an automorphism of &2. This explains the first product. Each factor in the second product is the number of
symmetries of the component class, which can be freely combined for each instance in that class (thus the
power) and, in turn, across classes to yield the second product term. Figure 14 illustrates this reasoning.

It is useful to distinguish between embeddings of a pattern into the mixture and matching “locations” at
which these embeddings occur, as illustrated in Figure 15. Locations differ in the set of identifiers of the
host graph that are involved in the embedding of the pattern. In the example of Figure 15, two embeddings
occur at location {8,9} and two at location {2,4}. Recall that the activity of a rule i is defined as

a; =L~ MY Qik;, (20)

where {£; ~ ./} is the set of embeddings from Z; into .4 and Q; is a correction factor to be determined.
Let {&£; ~ M} denote the locations of embeddings. Clearly, there are w ¢, embeddings per location:

HLi ~ MY = (L ~ Mol 0 <, (21)

Following the reasoning developed in the example of Figure 13, we can distinguish the consequences of
only as many rule applications as there are symmetries of w ¢, that the rule preserves, which we denote
with w ¢, . %,. Thus,

1
a,-zl{fimﬂ}IQik,-:|{$im¢%}1oc|wgi—ki. (22)
0L %

In this line of reasoning, only w ¢, .4, of the possible applications of a rule in a given mixture are
considered to be distinguishable and thus “physical” events:

1
Qj=—. (23)
WL~
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Figure 15: Embedding location. The diagram exhibits four embeddings of the pattern I into the host graph
II. The locations of the embeddings are given by the set of identifiers involved in the embedding, here two:
{8,9} (black embedding arrows) and {2,4} (red embedding arrows). Because of the twofold symmetry of the
pattern, there are two embeddings at each location, shown as solid and dotted arrows.

We refer to equation 23 as the “chemical” correction.

KKK KK KK

Figure 16: Symmetry correction. The pattern on the left has 4! = 24 automorphisms and the pattern on the
right has 2 automorphisms. In this case Q; = 2.

In the (contrived) example of Figure 16, only 12 of 24 possible embeddings per matching location in the
host graph lead to microscopically distinguishable outcomes.

Extending this line of thought to deal with agent creation and removal is straightforward. On the right hand
side of a rule, any agent that appears anew and is not in a connected component with a modified agent is
ignored. If a newly created agent is connected to agents already existing on the left side, one checks
whether a given automorphism on the left can be extended. Any such extension would be unique by virtue
of the rigidity of site graphs (section 2.2). If no such extension exists, the particular automorphism on the
left is not preserved by the rule.

» ‘'remove two agents and create two different ones anew’
A()l A() —> B()l B() (Uz,-—n%izz

Two automorphisms (including the identity) on the left; the agents disappear and fresh ones are
created. This preserves the non-trivial symmetry of the left.

» 'add two new agents’
A(), A() —> A(Q), A(), B(), B() We—gg; =2

Two automorphisms on the left; the agents are kept and fresh ones are created with no connection to
the old ones. This preserves the non-trivial symmetry of the left.

» 'add two new agents connected to old’
A(x[1]), A(x[1]) —> A(x[2]), A(xI[3]), B(x[2]), B(xI[3]) Wy, g, =2

Two automorphisms on the left; the agents, bound to each other on the left, dissociate and associate
with two new agents. The two A are treated equally, which preserves the non-trivial symmetry of the
left.

48



» ‘add two new agentsg connected to each other’
A(x[1]), A(x[1]) —> A(x[1]), A(x[1]), B(xI[2]), B(xI[2]) wg-x =2
Two automorphisms on the left. Again, no difference from the point of view of the two A agents on

the left; the non-trivial symmetry is preserved.

» ‘add one new agent connected to one old’
A(x[.1), A(x[.]) —> A(x[1]), A(x[.]), B(xI[1l]) wg-x =1

Two automorphisms on the left. Since the new agent is bound to one of the old agents, it creates a
difference between them and the non-trivial symmetry on the left is lost.

/\ Careful: As indicated at the end of sections 3.2 and 3.3.1, at present KaSim does not automatically
apply symmetry corrections, i.e. Q; =1 in equation (1). Any such corrections are the responsibility of the
user.
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